a2 United States Patent

Pohlack et al.

US009106257B1

US 9,106,257 B1
Aug. 11, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

(56)

CHECKSUMMING ENCAPSULATED
NETWORK PACKETS

Applicant: Amazon Technologies, Inc., Reno, NV
(US)

Martin Thomas Pohlack, Dresden
(DE); Eric Jason Brandwine,
Haymarket, VA (US); Matthew Shawn
Wilson, Seattle, WA (US)

Inventors:

Assignee: Amazon Technologies, Inc., Reno, NV

(US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 224 days.

Appl. No.: 13/927,913

Filed: Jun. 26,2013

Int. CL.
GO6F 11/10
HO3M 13/00
HO3M 13/09
U.S. CL
CPC HO3M 13/09 (2013.01)
Field of Classification Search

CPC HO3M 13/09
See application file for complete search history.

(2006.01)
(2006.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

“Internetworking Technology Handbook” Cisco DocWiki http://
docwiki.cisco.com/wikilnternetworking_ Technology_ Handbook
downloaded Jun. 26, 2013 Selected Sections, pp. 1-54.

Data Encapsulation and the TCP/IP Protocol Stack (Oracle System
Administration Guide, vol. 3) © 2010, Oracle Corporation and/or its
affiliates, downloaded Jun. 26, 2013 pp. 1-3.

U.S. Appl. No. 13/069,727, filed Mar. 23, 2011, Eric J. Brandwine et
al.

U.S. Appl. No. 13/069,719, filed Mar. 23, 2011, Eric J. Brandwine et
al.

* cited by examiner

Primary Examiner — Sam Rizk
(74) Attorney, Agent, or Firm — Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT

Methods and apparatus for checksumming network packets
encapsulated according to an encapsulation protocol are
described in which a single checksum is performed at the
encapsulation layer, with checksum generation performed at
the source encapsulation layer and checksum validation per-
formed at the destination encapsulation layer. The packet
source and packet destination may be informed by the encap-
sulation layer that a checksum operation is not necessary for
the network packets. By performing checksumming at the
encapsulation layer, the method may reduce overhead as
checksum computation is initiated once rather than twice as
in conventional encapsulation techniques. In addition, check-
sum algorithms may be used that provide stronger error detec-
tion or correction than is provided by standard network pro-
tocol checksumming, different checksum algorithms may be

2004/0218623 Al 11/2004 Goldenberg et al. " X o
2009/0161568 Al* 6/2009 KASIEL ...oooooeooeooee., 370/252 selected for different paths according to one or more criteria,
2011/0261812 A1 10/2011 Kini et al. and checksum operations may be offloaded to hardware.
2011/0314274 Al 12/2011 Swartz
2012/0250682 Al 10/2012 Vincent et al.
2012/0250686 Al 10/2012 Vincent et al. 20 Claims, 16 Drawing Sheets
packel S0UGe snerates neswork packel(s) wihou! checksom | packet S
| destiration
|
encapsulation layer encapsutates the network packet(s; accosaing i
o AR i
13 |
encapsulalion ayor generes checkstum o the eocapsuiaion |
? i encapsuz\ggnn laver
e encapseialion packet o deStiton over Nework substate i
notwonc doviss veidatos e ccapsiiation paolct using shookstin| nebuork ;A;'bsuale
i - A

| netuork devics de-encapsitaios the network packel(s)
160

network dstice st rotzble aCLIESS 1 ihe neRwcrk packetisy
162

‘ etwork devico chacksums the noheork packots)

:

network cevice sends the nefwork packei(s} onto another network
166

netivork
290

nefiwark device:
280

U.S. Patent Aug. 11, 2015 Sheet 1 of 16 US 9,106,257 B1

packet source generates network packet(s) without checksum
100

:

source encapsulation layer encapsulates the network packet(s)
according to an encapsulation protocol to generate an
encapsulation packet
102

l

source encapsuiation layer generates checksum for the
encapsulation packet
104

.

send the encapsulation packet fo the destination over the network
substrate
106

:

destination encapsulation layer validates the encapsulation packet
using the checksum
108

'

destination encapsulation layer de-encapsulates the network
packet(s)
110

'

destination encapsulation fayer provides the network packet(s) fo
the packet destination, informing the packet destination that
checksum validation is not required
112

FIG. 1A

U.S. Patent Aug. 11, 2015 Sheet 2 of 16 US 9,106,257 B1

packet source generates network packel(s) without checksum
150

'

encapsulation layer encapsulates the network packel(s) according
to an encapsulation protocol to generate an encapsulation packet
152

:

encapsulation layer generates checksum for the encapsulation
packet
154

'

send encapsulation packet to destination over network substrate
156

'

network device validates the encapsulation packet using checksum
158

v

network device de-encapsulates the network packel(s)
1680

:

network device adds routable address to the network packet(s)
182

;

network device checksums the network packel(s)
164

l

network device sends the network packet(s) onto another network
166

FIG. 1B

U.S. Patent Aug. 11, 2015 Sheet 3 of 16 US 9,106,257 B1
packet source network 5
200 packet (
202A |
encapsulation 212 checksum not
generated
encapsulation 1
acket . i
ation| 1 neaazigy | P
encapsu ation fayer) checksum checksum module
210 network | e 290A
packet S
202A
network substrate
250
encapsulation)
packet encapsulation valdate
2144 metadata 216A packgt i
AAAAAAAAAA shecksum | checksum module
HENO G fem———es 2908
: packet ==
encapsulation layer 00A
260 I ——
l B
decapsulation 262 checksum validation
i not hecessary
i ‘
””” netiork | A
L packet
packet destination 202A
20 T

FIG. 2A

U.S. Patent Aug. 11, 2015 Sheet 4 of 16

packet source | network '
200 | packet

N

encapsulation Jb

US 9,106,257 B1

v e v o - — -

encapsvulation checksum not
212 generated

packet encapsulation

9148 generate
\\" metadatam_) checksum

| onetwork | <
encapsulation layer | packet

210 —

checksum module
2204

network substrate
250
encapsulation
packet sulat validate
2148 encapsulaton packet with
N metadata 2168 heck
| e Checksum checksum module
| network < 290C
| packet S
2028
network device - "
280 decapsulation
282
routable address addition
284
tandard
enerate s
c%xecksum network protocol
,,,,,,,,,,,,,) checksum
mechanism
204
network network packet
{checksummed)
290 2028 FIG. 2B

U.S. Patent Aug. 11, 2015 Sheet 5 of 16 US 9,106,257 B1

77777777777777777777777777 validate tandard
checksummed packet with stanca
{ network [, checksum netuwork protacol
packet L acket | checksum
destination PP mechanism
270 204
Ea ‘\
i |
checksdm packet decagzglatmn
encapsulation ‘
A packet encapsulation
encapsulation layer 214G metadata 216G
260 checksummed
network
network substrate
250
encapsulation
packet encapsulation |
214¢ metadata 216C |
checksummad | |
network
packet
network deviece @ LT/
280
encapsulation
288
checksummed
network network
290 packet
202C FIG. 2C

U.S. Patent Aug. 11, 2015 Sheet 6 of 16 US 9,106,257 B1

S o - - - - ----"--"""""-""""-""-"¥""”"-""”"-"-""=”- ""”"""="="="—-"="-"="—"="—"=—"—""—"— A
' |
: host 310A . host 3108 . host 310C . [
. W .t [
! |
l yesource resource resgtirce I
ns ance(s instance(s instance S)
' st . nst '
| provider 314A 314B 314C |
" E R
| netor 1]] il |
i m checksum VMM checksum VMM checksum :
module module module
: 28 1 o0a 3B 1 o0 32 00 |
|
' |
' |
by i B TTET T T T T T T T Sl S A S~
P network } I
| | substrate b
Py %02 path 306A path 306B L
i i
t
o Do
b b
P path 306C Do
] path |
: : 306D b
1
f |
1
P ro
I
P — ih 306E '
P network [checksum P | !
| : device | moduie o
TR EEEEEEE— 204 7= R o
______ B e e
direct
communicaticns
fink
308\;
1/ l
[v | checksum intermediate network
| module 350 i
[E2 | e || \\/— /
:] J
N provider network 3008 }

external client
device(s)
360

FIG. 3

U.S. Patent

Aug. 11, 2015 Sheet 7 of 16 US 9,106,257 B1
——— _._. ___ _ _______ !
e client private weos ||
!
instance network instance i
4147 410 4148 i
_____ e A
client e e e client
packets { \I packets
' |
v I |
encapsulation l | decapsulation
420 [I 432
I network substrate | A
encapsulation [402
packets | _ :
A 4
. | | checksum module
checksum module [4298
4224 I I =
i I
' |
' |
I
encapsulation [I encapsulation
packets with [packets with
checksum : path 406 | checksum
|
VMM 412 l | VMM 412
' |
' |
I
~— J

U.S. Patent Aug. 11, 2015 Sheet 8 of 16 US 9,106,257 B1

encapsulation
packet \
500
encapsulation packet checksum 504
checksum information 506 encapsulation
header
other encapsulation metadata 508 502
checksum field 524 network
packet
other packet metadata 526 header(s)
522
network
packel(s)
520
data 530
\ encapsulation
other encapsulation metadata 512 } footer (optional)
510

FIG. 5

U.S. Patent Aug. 11, 2015 Sheet 9 of 16 US 9,106,257 B1

packet source generates network packet(s) without checksum
600

'

source encapsulation layer encapsulates the network packet(s)
according to an encapsulation protocol to generate an
encapsulation packet
602

,

datermine a checksum algorithm for the packet flow or path fo the
destination
604

;

source encapsulation layer generates a checksum for the
encapsulation packet according o the determined checksum
algorithm
606

,

send encapsulation packet to the destination over the network
infrastructure
608

,

deslination encapsulation layer validates the encapsulation packet
according to the indicated chechsum aigorithm
610

:

destination encapsulation layer de-encapsulates the network
packet(s)
612

l

destination encapsulation layer provides the network packet(s) fo
the packet destination, informing the packet destination that
checksum validation is nof required
614

FIG. 6

U.S. Patent Aug. 11, 2015 Sheet 10 of 16 US 9,106,257 B1

packet
7T14A
checksum module
720A | 4
checksum algorithm determination
122
[N ottt T !
| | I
| |]
I i I
¥ ¥ ¥
checksum checksum checksum checksum
algorithm algorithm algorithm » v | algorithm
124A 7248 724C 724N
[, AN
packet with
source checksum

710 48

network substrate/
intermediate network
750

destination packet with
760 checksum
714B

checksum module 2
720B n

I
Y ¥ ¥
checksum checksum checksum checksum
algorithm algorithm algorithm w ® m | algorithm
120A 1208 120C I24N

A4

validated
packet

114 FIG. 7

U.S. Patent Aug. 11, 2015 Sheet 11 of 16 US 9,106,257 B1

destination encapsulation layer receives
encapsulation packet
800

l

destination encapsulation layer checks
encapsulation packet according to the chechsum
algorithm
802

error NO

correction?
806
attempt to correct efror(s)
808
> YES SUCCESS
810
NO
Y ¥
destination encapsulation layer de-encapsulates request retransmission or drop packet
the network packei(s) q o p
812 816

l

destination encapsulation layer provides the
network packet(s) to the packet destination
814

FIG. 8

U.S. Patent

provider network
900

client
network
950B

client
network
950A

Aug. 11, 2015

Sheet 12 of 16

resource instances
N2

private IP
addresses

316 [

public to private
address mapping

public [P
addresses
914

1\
v

virtualization service(s)
910

intermediate
network
940

client device(s)
952

US 9,106,257 B1

other network
entities
920

client
network
950C

FIG. 9

U.S. Patent Aug. 11, 2015 Sheet 13 of 16 US 9,106,257 B1
: VM L WM | VM| VM VM| WM] ovM | WM
| sorage || storage |4 4 o 102471 1024A2 1024A3) 1024A4 1024B1| 1024B2| 1024B3| 102484
1018A || 10188
VMM 10224 VMM 10228
virtualized data store(s)
1018 host 1020A host 10208

mapping service
1030

mapping
information

provider
data center
1000

routers, switches,
NATs, TAPs, etc.
1012

edge router(s)
1014

overlay
network

network
substrate
1010

local network(s)

1050

comptiting
system(s)

1052

intermediate network
1040

data center(s)
1060

computing
system(s)
1070

FIG. 10

U.S. Patent Aug. 11, 2015 Sheet 14 of 16 US 9,106,257 B1

(|
! |
! e [
| A
. —1.- |
: storage |
I 1118 o® :
! computation resources d I
: virtualized data store 1124 '
| 1116 :
I
. |
I .
| provider network |
! 1100 |
! [
I NPT
! storage virtualization hardware virtualization :
| service service :
: 1110 1120 |
— |
I
! |

intermediate |
network |
1140

FIG. 11
client Ty
network e | virtualized |
1150 storage |

—————

local network
1156

_I
h
1!
!
1!
1!
1!
!
1!
!

—1

virtual computing

|

|

|
client device(s) ! system(s)
|
|

1190 1192

To——————=

U.S. Patent Aug. 11, 2015 Sheet 15 of 16 US 9,106,257 B1

/
/—-.I/ storage
7 virtualization
/. . service
rvirtualized .
provider | private
network ! network hardware
v 1260 virtualization
1200 \\ service
\\\’\ ‘(_//
\
\
AN private public /
N Ve N /
gateway |~ <| gateway
1262 1264
LA
A\
client traffic
\ network entity
\\ 1244
private . .
communications intermediate
channel network dlient traffic
1242 1240
W 43y

\

\

\
iy
gateway
1256
client . ’ E o'
network
1250 client device(s)
1252

FIG. 12

U.S. Patent Aug. 11, 2015 Sheet 16 of 16 US 9,106,257 B1

Computer system
2000
Processor Processor Processor
2010a 2010b et 2010n

! ! ;

I/Q interface 2030

; I

System memory 2020 Network interface

Code Data 2040
2027 2026 T

Network(s)
2070

Other device(s)
2060

FIG. 13

US 9,106,257 B1

1
CHECKSUMMING ENCAPSULATED
NETWORK PACKETS

BACKGROUND

Checksum techniques are used for detecting errors in trans-
mitted packets. In a checksum technique, a checksum func-
tion or algorithm is applied to a packet prior to transmission,
and the resulting checksum value is stored in a field of the
packet as packet metadata. At the packet destination, the same
checksum algorithm may be applied to the packet, and the
resulting checksum value is compared to the checksum value
stored in the packet. If the two values are the same, then it is
likely that the packet was not accidentally altered during
transmission. If the two values differ, then at least one error
has been introduced into the packet during transmission.

There are several different checksum algorithms that vary
according to their ability to detect errors from relatively weak
error detection that can only detect some types of errors to
relatively strong error detection (e.g., 32-bit cyclic redun-
dancy code (CRC32)) that can detect more complex errors or
even maliciously introduced errors. In addition to detecting
errors, some checksum techniques employ checksum algo-
rithms that generate checksums that allow at least some
detected errors to be corrected at the destination, for example
error-correcting codes such as Reed-Solomon codes and era-
sure codes produced by erasure coding techniques, thus
avoiding the need to retransmit the packets.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a high-level flowchart of an encapsulation pro-
tocol checksum method, according to at least some embodi-
ments.

FIG. 1B is a high-level flowchart of an encapsulation pro-
tocol checksum method in which data packets are sent from a
packet source on a network to a packet destination on another
network, according to at least some embodiments.

FIG. 2A illustrates transmitting network packets from a
packet source on a network to a packet destination on the
network over the network substrate, according to at least
some embodiments of an encapsulation protocol checksum
method.

FIG. 2B illustrates sending network packets from a packet
source on a network to a packet destination on another net-
work, according to at least some embodiments of an encap-
sulation protocol checksum method.

FIG. 2C illustrates receiving checksummed network pack-
ets from a device on another network via a network device,
encapsulating the network packets, and routing the encapsu-
lated network packets to a packet destination on the network
over the network substrate, according to at least some
embodiments.

FIG. 3 illustrates an example provider network environ-
ment in which embodiments of the methods and apparatus for
checksumming encapsulation packets may be implemented,
according to at least some embodiments.

FIG. 4 illustrates implementing the methods and apparatus
for checksumming encapsulation packets for a particular path
or data flow between client resource instances in a client
private network on a provider network, according to at least
some embodiments.

FIG. 5 shows an example encapsulation packet, according
to at least some embodiments.

FIG. 6 is a high-level flowchart of an encapsulation proto-
col checksum method in which a checksum algorithm is

10

15

20

25

30

35

40

45

50

55

60

65

2

selected from among several checksum algorithms based on
one or more criteria, according to at least some embodiments.

FIG. 7 is a high-level block diagram of a checksum tech-
nique in which a checksum algorithm is selected from among
several checksum algorithms based on one or more criteria,
according to at least some embodiments.

FIG. 8 is a flowchart of a method for handling errors
detected in encapsulation packets using checksumming,
according to at least some embodiments.

FIG. 9 illustrates an example provider network environ-
ment, according to at least some embodiments.

FIG. 10 illustrates an example data center that implements
an overlay network on a network substrate using encapsula-
tion protocol technology, according to some embodiments.

FIG. 11 is a block diagram of an example provider network
that provides a storage virtualization service and a hardware
virtualization service to clients, according to at least some
embodiments.

FIG. 12 illustrates an example provider network that pro-
vides virtualized private networks to at least some clients,
according to at least some embodiments.

FIG. 13 is a block diagram illustrating an example com-
puter system that may be used in some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled in the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed descrip-
tion thereto are not intended to limit embodiments to the
particular form disclosed, but on the contrary, the intention is
to cover all modifications, equivalents and alternatives falling
within the spirit and scope as defined by the appended claims.
The headings used herein are for organizational purposes
only and are not meant to be used to limit the scope of the
description or the claims. As used throughout this application,
the word “may” is used in a permissive sense (i.e., meaning
having the potential to), rather than the mandatory sense (i.e.,
meaning must). Similarly, the words “include”, “including”,
and “includes” mean including, but not limited to.

DETAILED DESCRIPTION

Various embodiments of methods and apparatus for check-
summing network packets encapsulated according to an
encapsulation protocol are described. In encapsulation pro-
tocol technology, network packets may be generated by a
network packet source (an entity that generates the network
packets), wrapped or encapsulated at an encapsulation layer
according to an encapsulation protocol to produce encapsu-
lation protocol packets (also referred to herein as encapsula-
tion packets or network substrate packets). The encapsulation
packets are then routed over a network or network substrate to
a destination according to routing information for the encap-
sulation packets. At the destination, an encapsulation layer
removes the network packets from the encapsulation packets
and provides or sends the network packets to the network
packet destination (an entity that consumes the network pack-
ets).

Each encapsulation packet may include one, two, or more
network packets. In various embodiments, the encapsulation
protocol may be a standard network protocol such as IPv6 or
UDP, or alternatively may be a non-standard, custom, or
proprietary network protocol.

The network packets that are encapsulated according to the
encapsulation protocol may, for example, be Internet Proto-
col (IP) technology packets including but not limited to IPv4
(Internet Protocol version 4) packets, [IPv6 (Internet Protocol

US 9,106,257 B1

3

version 6) packets, Transmission Control Protocol (TCP)
packets, User Datagram Protocol (UDP) packets, or Internet
Control Message Protocol (ICMP) packets. However, the
network packets may be packets according to other IP proto-
cols, other standard protocols than IP protocols, or packets
according to other non-standard, custom, or proprietary pro-
tocols.

In addition, a network packet that is encapsulated accord-
ing to the encapsulation protocol may include one, two or
more network protocol layers, for example according to the
Open Systems Interconnection (OSI) model. As an example,
a network packet that is received at the encapsulation layer
from a packet source may be a Layer 4 (transport layer)
packet (e.g., a TCP or UDP packet) that includes a Layer 5
payload, or a Layer 3 (network layer) packet (e.g., IPv4 or
1Pv6) that includes a Layer 4 packet as a payload. Note that
each network protocol layer may add metadata (e.g., a header
and/or footer) to the network packet. Thus, a network packet
as used herein may include one, two, or more headers and/or
footers according to network protocols used at the layer(s).
The encapsulation layer adds additional metadata (e.g., an
encapsulation header and/or footer) to the network packet
according to the encapsulation protocol.

Note that many network protocols include a checksum field
in the network protocol metadata, and the published standards
or specifications of many network protocols (e.g., the Request
for Comments (RFC) publications of the Internet Engineer-
ing Task Force (IETF) and the Internet Society) require that
the checksum field be filled in by the sender in order to be
compliant with the standards.

In conventional packet encapsulation techniques, check-
summing of the network packets may typically be performed
according to a standard network protocol checksum mecha-
nism at the network packet source (checksum generation)
prior to passing the network packets to the encapsulation
layer, and at the network packet destination (checksum vali-
dation) after receiving the network packets from the encap-
sulation layer. As an example of a standard network protocol
checksum mechanism, TCP includes a 16-bit checksum field
in the TCP packet header and specifies a TCP checksum
algorithm. Similarly, UDP includes a 16-bit checksum field in
the UDP header and specifies a checksum algorithm. These
standard network protocol checksum mechanisms may pro-
vide a moderate level of error detection, but do not provide
error correction. In at least some conventional packet encap-
sulation techniques, the encapsulation layer at the source and
destination may also perform a separate checksumming of the
encapsulation protocol metadata (e.g., the encapsulation
header and/or footer) in which the network packets are
wrapped.

In embodiments of the methods and apparatus for check-
summing network packets encapsulated according to an
encapsulation protocol as described herein, rather than per-
forming separate checksumming of the network packets at
the packet source and packet destination and of the encapsu-
lation protocol metadata at the encapsulation layer, a single
checksum operation is performed for the encapsulation
packet at the encapsulation layer of the source and destina-
tion, with checksum generation being performed at the source
encapsulation layer and checksum validation being per-
formed at the destination encapsulation layer. The network
packet source and network packet destination may be
informed by the encapsulation layer that a checksum opera-
tion is not necessary for the network packets. For simplicity,
the method may be referred to as an encapsulation protocol
checksum method.

10

15

20

25

30

35

40

45

50

55

60

65

4

Using the encapsulation protocol checksum method, the
network packet source does not have to fill in the checksum
field(s) of the network packets, and the network packet des-
tination does not have to validate the network packets accord-
ing to the checksum; checksumming operations are instead
handled at the encapsulation layer at the source and destina-
tion, and a checksum field of the encapsulation protocol is
used instead of the checksum field(s) of the network packets.
By performing a single checksum for the encapsulation
packet at the encapsulation layer, embodiments of the encap-
sulation protocol checksum method may reduce the amount
of overhead as checksum computation is only initiated at the
encapsulation layer rather than at both the encapsulation layer
and the network packet source and destination as in conven-
tional packet encapsulation techniques.

In addition, by moving the checksum to the encapsulation
layer and performing the checksum on the encapsulation
packet, embodiments of the encapsulation protocol check-
sum method may allow checksum algorithms to be used that
provide stronger error detection than is provided by standard
network protocol checksum mechanisms. In addition, in
some embodiments the encapsulation protocol checksum
method may allow error correction techniques to be used,
thus reducing the need for retransmissions. For example, the
encapsulation protocol may use a larger checksum field (e.g.,
a 32-bit field, 64-bit field, etc.) than is used in many conven-
tional network protocols, including protocols such as UDP
and TCP, allowing more robust error detection or error cor-
rection technology to be used such as 32-bit cyclic redun-
dancy code (CRC32) technology and erasure coding technol-
ogy.

In addition, by moving the checksum to the encapsulation
layer, in some implementations the encapsulation protocol
checksum method may allow checksum operations to be per-
formed at least in part in hardware rather than in software by
offloading checksum operations to hardware on the device
rather than performing the operations via conventional execu-
tion of software instructions within a central processing unit
(CPU). The hardware to which checksum operations are off-
loaded may include special processors on the device other
than the CPU, as well as special instructions implemented by
the CPU. For example, some embodiments may leverage
special instructions provided by one or more general purpose
central processing units (CPUs) to perform checksum com-
putation. As another example, some embodiments may off-
load checksum computation from the CPU to external (to the
CPU) hardware such as a network interface card (NIC),
graphic processing unit (GPU), or other hardware on the
device. Offloading checksum operations onto hardware may
reduce CPU overhead as conventional software calculations
of checksums on CPUs may consume a considerable amount
of CPU resources.

As an example, the encapsulation protocol checksum
method may be implemented in network environments as
described herein (see, e.g., FIGS. 9 through 12) in which
hardware virtualization technology enables multiple operat-
ing systems to run concurrently on a host computer, i.e. as
virtual machines (VMs) on the hosts. A hypervisor, or virtual
machine monitor (VMM), on a host presents the VMs on the
host with a virtual platform and monitors the execution of the
VMs. The VMs may generate and consume network packets
(e.g., TCP or UDP packets), while the VMMs provide the
encapsulation layer that encapsulates the network packets for
transmission over a network substrate according to an encap-
sulation protocol and that de-encapsulates the network pack-
ets received over the network substrate. In such an environ-

US 9,106,257 B1

5

ment, offloading of operations onto hardware is typically
easier to perform at the VMMs than at the VMs.

In addition, by moving the checksum to the encapsulation
layer, the encapsulation protocol checksum method may
allow different checksum algorithms that provide different
levels of error detection and/or correction to be used based on
one or more criteria. For example, the encapsulation layer at
a source may evaluate one or more transmission quality cri-
teria for a transmission path to a destination to determine a
level of confidence in the quality of the path and, based on the
level of confidence, select a checksum algorithm that pro-
vides an adequate amount of error detection, and possibly
error correction, for the path. Other criteria that may be con-
sidered in determining a checksum algorithm may include,
but are not limited to, support for the algorithm on the source
and destination nodes or devices, efficiency of the algorithm
on the source and/or destination node (e.g., can checksum-
ming be offloaded to hardware?), and resource (e.g., CPU)
load on the source and/or destination nodes. Note that more
robust error detection and error correction techniques gener-
ally require more intensive and expensive operations and
more checksum bits (e.g., 32 or 64 bits instead of 16 bits).

By allowing checksum algorithms to be selected according
to one or more criteria including but not limited to the quality
of the paths, the encapsulation protocol checksum method
may allow resource usage to be balanced with the need for
error detection and correction, with algorithms that provide a
lower level of error detection, or even no error detection, used
for the paths in which the confidence is highest, while algo-
rithms that provide stronger error detection or error correc-
tion are used for the paths in which the confidence is lowest.

Embodiments of the encapsulation protocol checksum
method may, for example be implemented as or in an encap-
sulation layer checksum module, which may be referred to
herein as a checksum module for simplicity. The checksum
module may, for example, be implemented on one or more
computing systems within a network environment, for
example by virtual machine monitors (VMMSs) on host sys-
tems within a virtualized resource service in a service provid-
er’s network environment as illustrated in FIG. 3. However,
the encapsulation protocol checksum method as described
herein may be implemented in any packet-based networking
environment in which an encapsulation technique is used to
send encapsulated network packets from packet sources to
packet destinations. An example computer system on which
embodiments of the encapsulation protocol checksum
method may be implemented is illustrated in FIG. 13.

FIG. 1A is a high-level flowchart of an encapsulation pro-
tocol checksum method, according to at least some embodi-
ments. In FIG. 1A, network packets are transmitted from a
packet source on a network to a packet destination on the
network via a network substrate. As indicated at 100, the
packet source generates one or more network packets without
performing a checksum operation on the packet(s), and thus
without a checksum value in the checksum field of the net-
work packet header(s). The generated network packet(s) are
obtained by the encapsulation layer. For example, the packet
source may be a VM on a host system, and the encapsulation
layer may be implemented as or by a VMM on the host
system, as illustrated in FIG. 3.

As indicated at 102, the encapsulation layer encapsulates
the network packet(s) according to an encapsulation protocol
to generate an encapsulation packet (which may also be
referred to herein as a network substrate packet). See FIG. 5
for an example encapsulation packet that encapsulates one or
more network packets and includes an encapsulation header.
The encapsulation header may include, but is not limited to,

10

15

20

25

30

35

40

45

50

55

60

6

address and other information for routing the encapsulation
packet to the destination over the network substrate according
to the encapsulation protocol.

As indicated at 104, the encapsulation layer generates a
checksum for the encapsulation packet according to a check-
sum algorithm. In at least some embodiments, the encapsu-
lation layer generates a checksum value for the entire encap-
sulation packet including the encapsulation metadata (minus
the checksum field) and the encapsulation packet payload
(the network packet(s)). Alternatively, in some embodiments,
the encapsulation layer may perform checksumming of only
the encapsulation packet payload (the encapsulated network
packet(s)).

Any of various checksum algorithms may be used to gen-
erate the checksum in various embodiments. However, in at
least some embodiments, a stronger checksum algorithm than
the standard checksum algorithms used by conventional net-
work protocols such as TCP or UDP may be used, for
example a 32-bit checksum algorithm such as CRC32 tech-
nology algorithms rather than a standard 16-bit checksum
algorithm. In at least some embodiments, a checksum algo-
rithm that allows error correction may be used, such as Reed-
Solomon technology or erasure coding technology algo-
rithms. In at least some embodiments, the checksum
algorithm that is used may be selected from among several
checksum algorithms, for example based on a determined
level of confidence in the quality of the path over which the
encapsulation packet is to be transmitted, as illustrated in
FIGS. 6 and 7.

The generated checksum value is written to a checksum
field in the encapsulation header of the encapsulation packet.
See FIG. 5 for an example encapsulation packet with a check-
sum in the encapsulation header. In addition, other informa-
tion related to the checksum may be written to the encapsu-
lation header, such as an indication of whether or not
checksumming has been performed and an indication of the
checksumming algorithm that was used on the encapsulation
packet.

As indicated at 106, the encapsulation layer sends the
encapsulation packet to the destination. The encapsulation
packet may be routed to the destination over the network
substrate according to the routing information in the encap-
sulation packet header. At the destination, the encapsulation
packet may be received by an encapsulation layer. For
example, the destination may be a VM on a host system, and
the encapsulation layer may be implemented as or by a VMM
on the host system, as illustrated in FIG. 3.

As indicated at 108 of FIG. 1, after receiving the encapsu-
lation packet, the encapsulation layer at the destination vali-
dates the encapsulation packet using the checksum value in
the checksum field in the encapsulation header of the packet.
In at least some embodiments, to validate the packet, the
encapsulation layer generates a checksum value for the entire
encapsulation packet (minus the checksum field) using the
same checksum algorithm that was used to generate the
checksum value in the encapsulation header and compares the
generated checksum value to the checksum value in the
encapsulation header. If the two checksum values are the
same, then it is highly probable that the encapsulation packet
was not accidentally altered during transmission. If the two
checksum values differ, then at least one error has been intro-
duced into the encapsulation packet during transmission. A
method for handling error(s) detected in encapsulation pack-
ets using checksumming is illustrated in FIG. 8, which is
described later in this document.

As indicated at 110, after validating the encapsulation
packet, the encapsulation layer at the destination de-encap-

US 9,106,257 B1

7

sulates the network packet(s) from the encapsulation packet.
As indicated at 112, the encapsulation layer provides the
network packet(s) to the packet destination. In at least some
embodiments, the encapsulation layer informs the packet
destination that checksum validation is not required for the
network packet(s). For example, the packet destination may
be a VM on a host system, and the encapsulation layer may be
implemented as or by a VMM on the host system, as illus-
trated in FIG. 3.

As previously mentioned, in FIG. 1A, network packets are
being transmitted from a packet source on a network to a
packet destination on the network via a network substrate.
Both the packet source and packet destination are fronted by
an encapsulation layer. For example, the packet source and
packet destination may be VMs on host systems, and the
encapsulation layers may be implemented by VMMs on the
host systems, on a provider network as illustrated in FIG. 3.
However, in at least some implementations, a packet source
may transmit network packets to destinations on other net-
works, for example via an intermediate network such as the
Internet. For example, the packet source may be a VM on a
host system on a provider network, and the destination may be
an external client device, as illustrated in FIG. 3. In such
cases, the destination may not include an encapsulation layer
as described herein, and thus it may be necessary to perform
standard network protocol checksumming on the network
packet(s) prior to transmission to the destination via the inter-
mediate network. FIG. 1B is a high-level flowchart of an
encapsulation protocol checksum method in which data pack-
ets are being sent from a packet source on a network to a
packet destination on another network via a network device,
according to at least some embodiments.

As indicated at 150, a packet source on a source node or
device generates one or more network packets without per-
forming a checksum operation on the network packet(s), and
thus without a checksum value in the checksum field of the
network packet header(s). The generated network packet(s)
are obtained by the encapsulation layer on the source node or
device. For example, the packet source may be a VM on a host
system, and the encapsulation layer may be implemented as
or by a VMM on the host system, as illustrated in FIG. 3.

As indicated at 152, the encapsulation layer on the source
node or device encapsulates the network packet(s) according
to an encapsulation protocol to generate an encapsulation
packet. The encapsulation header may include address and
other information for routing the encapsulation packet to the
destination via a path over the network substrate.

As indicated at 154, the encapsulation layer on the source
node or device generates a checksum for the encapsulation
packet according to a checksum algorithm. In at least some
embodiments, the encapsulation layer generates a checksum
value for the entire encapsulation packet including the encap-
sulation metadata (minus the checksum field) and the encap-
sulation packet payload (the network packet(s)). Alterna-
tively, in some embodiments, the encapsulation layer may
perform checksumming of only the encapsulation packet
payload (the encapsulated network packet(s)).

The checksum value is written to a checksum field in the
encapsulation header (or footer) of the encapsulation packet.
See FIG. 5 for an example encapsulation packet with a check-
sum in the encapsulation header. In addition, other informa-
tion related to the checksum may be written to the encapsu-
lation header (or footer), such as an indication of whether or
not checksumming has been performed and an indication of
the checksumming algorithm that was used on the encapsu-
lation packet.

10

40

45

8

As indicated at 156, the encapsulation layer on the source
node or device sends the encapsulation packet to the destina-
tion over the network substrate. In this case, the destination of
the network packet(s) is a device that is not on the network
that contains the source node, and thus the encapsulation
packet may be routed to a network device (e.g., a router,
server, or other device) on the network according to the rout-
ing information in the encapsulation packet header. At the
network device, an encapsulation layer or encapsulation
module may receive the encapsulation packet. For example,
the destination of the encapsulated network packet(s) may be
an external client device 360, and the network device may be
anetwork device 304 that couples the provider network 300A
to an intermediate network 350, as illustrated in FIG. 3. As
another example, the source node may be on a network that is
a subnetwork or partition of a larger network (e.g., a provider
network as illustrated in FIG. 3), the destination of the encap-
sulated network packet(s) may be an endpoint on another
network that is a subnetwork or partition of the larger net-
work, and the network device may be a device that facilitates
communications between the two networks.

As indicated at 158 of FIG. 1B, the network device, after
receiving the encapsulation packet, may validate the encap-
sulation packet using the checksum value in the checksum
field in the encapsulation header ofthe packet. As indicated at
160, after validating the encapsulation packet, the network
device de-encapsulates the network packet(s) from the encap-
sulation packet. As indicated at 162, the network device may
add a routable network address (e.g., a routable IP address) to
the network packet(s) so that the network packet(s) can be
routed via the other network to the correct destination.

As indicated at 164, the network device may perform
checksumming of the network packet(s) according to the
protocol(s) of the packet(s), for example according to stan-
dard network protocol checksum mechanism(s) such as a
standard TCP checksum or standard UDP checksum depend-
ing on the network packet protocol. As previously noted, a
network packet may include one, two, or more headers
according to protocols used at the various protocol layers
(e.g., Layer 3 and Layer 4 headers), each header including
metadata for a network protocol used at the respective layer.
One or more of the layers may require a checksum, and thus
in some implementations a separate checksum may be gen-
erated for one, two or more protocol layers, e.g. a Layer 3 and
Layer 4 checksum. The generated checksum(s) may then be
written to the checksum field(s) of the network packet
header(s).

As indicated at 166, the network device then sends the
network packet(s) onto the other network for delivery to the
network packet destination (e.g., a node or device onthe other
network). The network packet destination may then validate
the network packet(s) according to the checksum value(s) in
the network packet header(s), requesting retransmission and/
or dropping packets according to the validation of the check-
sum(s) if necessary.

FIGS. 2A through 2C are block diagrams that illustrate
methods and apparatus for checksumming encapsulation
packets, according to at least some embodiments. In FIG. 2A,
network packets are being transmitted from a packet source
on a network to a packet destination on the network over the
network substrate. In FIG. 2B, network packets are being sent
from a packet source on a network to a packet destination on
another network via a network device (e.g., an edge router). In
FIG. 2C, network packets are being received from an external
packet source on another network via a network device (e.g.,
an edge router) on the network, encapsulated, and routed to a
packet destination on the network over the network substrate.

US 9,106,257 B1

9

FIG. 3 illustrates an example provider network environment
in which FIGS. 2A, 2B, and/or 2C may be implemented.

FIG. 2A illustrates transmitting network packets from a
packet source on a network to a packet destination on the
network over the network substrate, according to at least
some embodiments. In FIG. 2A, the packet source 200 gen-
erates one or more network packets 202A without performing
a checksum operation on the packet 202A, and thus without a
checksum value in the checksum field of the network packet
202A header(s). The generated network packet(s) 202A are
obtained by the encapsulation layer 210. For example, the
packet source 200 may be a VM on a host system, and the
encapsulation layer 210 may be implemented as or by a VMM
on the host system, on a provider network as illustrated in
FIG. 3. In at least some embodiments, the packet source 200
may inform the encapsulation layer 210 that a checksum was
not performed on the network packet(s) 202A.

Atthe encapsulation layer 210, an encapsulation 212 mod-
ule or function encapsulates the network packet(s) 202A
according to an encapsulation protocol to generate an encap-
sulation packet 214A (which may also be referred to as a
network substrate packet). See FIG. 5 for an example encap-
sulation packet that encapsulates one or more network pack-
ets and that includes an encapsulation header. The encapsu-
lation packet 214A includes encapsulation metadata 216A in
the encapsulation header which may include, but is not lim-
ited to, address and other information for routing the encap-
sulation packet 214 A to the destination indicated by the net-
work packet 202A via a path 252 over the network substrate
250 according to the encapsulation protocol.

The encapsulation layer 210 may invoke a checksum mod-
ule 220A to generate a checksum for the encapsulation packet
214A. The checksum module 220A may be implemented in
hardware, software, or a combination thereof. For example, in
at least some embodiments, a host system on which encapsu-
lation layer 210 is implemented may include one or more
central processing units (CPUs) that provide instructions
which may be used in computing checksums of data packets,
and that may be leveraged by the checksum module 220A.
Checksum module 220A may implement any of various
checksum algorithms to generate the checksum in various
embodiments. However, in at least some embodiments, a
stronger checksum algorithm than the standard checksum
algorithms used by network protocols such as TCP or UDP
may be implemented by checksum module 220A, for
example a 32-bit checksum algorithm such as 32-bit cyclic
redundancy code (CRC32) technology algorithms rather than
a standard 16-bit checksum algorithm. In at least some
embodiments, a checksum algorithm that allows error correc-
tion may be used, such Reed-Solomon technology or erasure
coding technology algorithms. In atleast some embodiments,
the checksum algorithm that is used by checksum module
220A may be selected from among several checksum algo-
rithms as illustrated in FIGS. 6 and 7, for example based on a
determined level of confidence in the quality of the path over
which the encapsulation packet 214A is to be transmitted.

In at least some embodiments, checksum module 220A
generates a checksum value for the entire encapsulation
packet 214 A including the encapsulation metadata 216 A (mi-
nus the checksum field) and the encapsulation packet payload
(the network packet(s) 202 A). Alternatively, in some embodi-
ments, checksum module 220A may perform checksumming
of only the encapsulation packet payload (the encapsulated
network packet(s) 202A).

The generated checksum value may be written to a check-
sum field in the encapsulation header (or footer) of the encap-
sulation packet 214A as additional encapsulation metadata

10

15

20

25

30

35

40

45

50

55

60

65

10

216A. In at least some embodiments, the checksum field may
be a larger checksum field (e.g., a 32-bit field, 64-bit field,
etc.) than the 16-bit field used in network protocols such as
UDP and TCP, allowing other and more robust error detection
or error correction technology to be used, such as CRC32
technology and erasure coding technology, than the error
detection technology provided by standard network protocol
checksum mechanisms.

In addition to the checksum value, other information
related to the checksum may be written as encapsulation
metadata 216A to the encapsulation packet 214 A, such as an
indication of whether or not checksumming has been per-
formed on the encapsulation packet 214A and an indication of
the particular checksumming algorithm that was used on the
encapsulation packet 214A.

After the checksum has been generated and written to the
encapsulation packet 214A, the encapsulation layer 210
sends the encapsulation packet 214 A to the destination indi-
cated by the network packet 202A. The encapsulation packet
214 A may be routed to the destination via a path 252 over the
network substrate 250 according to the routing information in
the encapsulation header of the packet 214A. At the destina-
tion, the encapsulation packet may be received by an encap-
sulation layer 260. For example, the destination may be a VM
on a host system, and the encapsulation layer 260 may be
implemented as or by a VMM on the host system, as illus-
trated in FIG. 3.

After receiving the encapsulation packet 214 A, the encap-
sulation layer 260 at the destination validates the encapsula-
tion packet 214 A using the checksum value in the checksum
field in the encapsulation header of the packet 214A. In at
least some embodiments, to validate the packet 214 A, the
encapsulation layer 260 invokes checksum module 220B to
generate a checksum for the entire encapsulation packet
214A (minus the checksum field). Alternatively, in some
embodiments, checksum module 220B may perform check-
sum validation for only the encapsulation packet payload (the
encapsulated network packet(s)).

The checksum module 220B uses the same checksum algo-
rithm that was used by checksum module 220A at the source
to generate the checksum value in the encapsulation metadata
216A and compares the generated checksum value to the
checksum value from the encapsulation metadata 216 A. In at
least some embodiments, the checksum module 220B deter-
mines the checksum algorithm that was used according to
information related to the checksum that was written as
encapsulation metadata 216A to the encapsulation packet
214A at encapsulation layer 210. If the two checksum values
are the same, then it is highly probable that the encapsulation
packet 214A was not accidentally altered during transmis-
sion. If the two checksum values differ, then at least one error
has been introduced into the encapsulation packet 214A dur-
ing transmission. A method for handling error(s) detected in
encapsulation packets using checksumming is illustrated in
FIG. 8, which is described later in this document.

After validating the encapsulation packet 214A, a decap-
sulation 262 module or function at the encapsulation layer
260 de-encapsulates the network packet(s) 202A from the
encapsulation packet 214 A. The encapsulation layer 260 then
provides the network packet(s) 202 A to the packet destination
270. In at least some embodiments, the encapsulation layer
260 informs the packet destination 270 that checksum vali-
dation is not required for this network packet(s) 202A. For
example, the packet destination 270 may be a VM on a host
system, and the encapsulation layer 260 may be implemented
as or by a VMM on the host system, as illustrated in FIG. 3.

US 9,106,257 B1

11

FIG. 2B illustrates sending network packets from a packet
source on a network to a packet destination on another net-
work via a network device, according to at least some
embodiments. For example, in FIG. 2B, the packet source 200
may be a VM on a host system on a provider network, the
encapsulation layer 210 may be implemented as or by a VMM
on the host system, the network device 280 may be a network
device that couples the provider network to an intermediate
network (network 290), and the packet destination may be a
client device coupled to the intermediate network, as illus-
trated in FIG. 3. As another example, the packet source 200
and encapsulation layer 210 may be implemented on a node
or host device on a network that is a subnetwork or partition
of a larger network (e.g., a provider network as illustrated in
FIG. 3), the destination of the encapsulated network packet(s)
may be an endpoint on another network 290 that is a subnet-
work or partition of the larger network, and the network
device 280 may be a device that facilitates communications
between the two networks.

In FIG. 2B, the packet source 200 generates one or more
network packets 202B without performing a checksum
operation on the packet 202B, and thus without a checksum
value in the checksum field of the network packet 202B
header(s). The network packet(s) 202B are obtained by the
encapsulation layer 210. In at least some embodiments, the
packet source 200 may inform the encapsulation layer 210
that a checksum was not performed on the network packet(s)
202B.

Atthe encapsulation layer 210, an encapsulation 212 mod-
ule or function encapsulates the network packet(s) 202B
according to an encapsulation protocol to generate an encap-
sulation packet 214B. See FIG. 5 for an example encapsula-
tion packet that encapsulates one or more network packets
and that includes an encapsulation header. The encapsulation
packet 214B includes encapsulation metadata 216B in the
encapsulation header that may include, but is not limited to,
address and other information for routing the encapsulation
packet 214B to the destination indicated by the network
packet 202B. In FIG. 2B, the destination of the network
packet 202B is a network address (e.g., an IP address) of a
device on an external network, and thus the routing informa-
tion may allow the encapsulation packet to be routed to a
network device 280 via a path 254 over the network substrate
250 according to the encapsulation protocol.

The encapsulation layer 210 may invoke a checksum mod-
ule 220A to generate a checksum for the encapsulation packet
214B, and the generated checksum value may be writtento a
checksum field of the encapsulation packet 214B as addi-
tional encapsulation metadata 216B, as described above in
reference to FIG. 2A. In at least some embodiments, the
checksum field in the encapsulation packet 214B may be a
larger checksum field (e.g., a 32-bit field, 64-bit field, etc.)
than the 16-bit field used in network protocols such as UDP
and TCP, allowing other and more robust error detection and
correction technology to be used, such as CRC32 technology
and erasure coding technology, than the error detection tech-
nology provided by standard network protocol checksum
mechanisms. In addition to the checksum value, other infor-
mation related to the checksum may be written as encapsula-
tion metadata 216B to the encapsulation packet 214B, such as
an indication of whether or not checksumming has been per-
formed onthe encapsulation packet 214B and an indication of
the checksumming algorithm that was used on the encapsu-
lation packet 214B.

In at least some embodiments, checksum module 220A
generates a checksum value for the entire encapsulation
packet 214B including the encapsulation metadata 216B (mi-

10

15

20

25

30

35

40

45

50

55

60

65

12

nus the checksum field) and the encapsulation packet payload
(the network packet(s) 202B). Alternatively, in some embodi-
ments, checksum module 220A may perform checksumming
of only the encapsulation packet payload (the encapsulated
network packet(s) 202B).

After the checksum has been generated and written to the
encapsulation packet 214B, the encapsulation layer 210
sends the encapsulation packet 214B to network device 280
via a path 254 over the network substrate 250. After receiving
the encapsulation packet 214B, network device 280 may vali-
date the encapsulation packet 214B using the checksum value
in the checksum field in the encapsulation header of the
packet 214B. In at least some embodiments, to validate the
packet 214B, network device 280 invokes checksum module
220C to generate a checksum for the entire encapsulation
packet 214B (minus the checksum field). Alternatively, in
some embodiments, checksum module 220C may perform
checksum validation for only the encapsulation packet pay-
load (the encapsulated network packet(s)).

The checksum module 220C uses the same checksum algo-
rithm that was used by checksum module 220A at the source
to generate the checksum value in the encapsulation metadata
216B and compares the generated checksum value to the
checksum value in the encapsulation metadata 216B. In at
least some embodiments, the checksum module 220C deter-
mines the checksum algorithm that was used according to
information related to the checksum that was written as
encapsulation metadata 216B to the encapsulation packet
214B at encapsulation layer 210. If the two checksum values
are the same, then it is highly probable that the encapsulation
packet 214B was not accidentally altered during transmis-
sion. If the two checksum values differ, then at least one error
has been introduced into the encapsulation packet 214B dur-
ing transmission. A method for handling error(s) detected in
encapsulation packets using checksumming is illustrated in
FIG. 8, which is described later in this document.

After validating the encapsulation packet 214B, a decap-
sulation 282 module or function of the network device 280
de-encapsulates the network packet(s) 202B from the encap-
sulation packet 214B. A routable network address 284 mod-
ule or function of network device 280 may add a routable
address (e.g., an IP address) to the network packet(s) 202B so
that the network packet(s) 202B can be routed via network
290 to the correct destination address of a device on an exter-
nal network. The network device 280 may perform check-
summing of the network packet(s) 202B, for example accord-
ing to a standard network protocol checksum mechanism 204,
for example a standard TCP checksum or standard UDP
checksum depending on the network packet type. As previ-
ously noted, a network packet may include one, two, or more
headers according to protocols used at the various protocol
layers (e.g., Layer 3 and Layer 4 headers), each header includ-
ing metadata for a protocol used at the respective layer. One or
more of the layers may require a checksum, and thus in some
implementations a separate checksum may be generated for
one, two or more protocol layers, e.g. a Layer 3 and Layer 4
checksum. The generated checksum value(s) may then be
written to the checksum field(s) of the network packet
header(s).

The network device 280 then sends the checksummed net-
work packet(s) 202B onto network 290 (which may, for
example, be an intermediate network such as the Internet) for
delivery to the packet destination according to the routable
network address in the network packet header(s). Upon
receiving the network packet(s) 202B, the packet destination
may validate the network packet(s) according to the check-

US 9,106,257 B1

13

sum value(s) in the network packet header(s), and/or drop-
ping packets according to the validation of the checksum(s) if
necessary.

FIG. 2C illustrates receiving checksummed network pack-
ets from a device on another network via a network device,
encapsulating the network packets, and routing the encapsu-
lated network packets to a packet destination on the network
over the network substrate, according to at least some
embodiments. For example, in FIG. 2C, the packet destina-
tion 270 may be aVM on a host system on a provider network,
the encapsulation layer 260 may be implemented as or by a
VMM on the host system, the network device 280 may be a
network device that couples the provider network to an inter-
mediate network (network 290), and the source of network
packet 202 may be a client device coupled to the intermediate
network. As another example, the packet destination 270 and
encapsulation layer 260 may be implemented on a node or
host device on a network that is a subnetwork or partition of
alarger network, the source ofthe network packet 202 may be
an endpoint on another network 290 that is a subnetwork or
partition of the larger network, and the network device 280
may be a device that facilitates communications between the
two networks.

In FIG. 2C, the network device 280 on the network may
receive one or more checksummed network packets 202C
from some packet source (e.g., a device on another network)
via network 290. An encapsulation 288 module or function of
network device 280 encapsulates the network packet(s) 202C
according to an encapsulation protocol to generate an encap-
sulation packet 214C. While not shown, in at least some
embodiments checksumming of the encapsulation packet
214C may be, but is not necessarily, performed at the network
device 280 as previously described to generate a checksum
value in the checksum field of the encapsulation packet 214C.
The encapsulation packet 214C is then routed to the destina-
tion on the network via a path 256 over the network substrate
250 according to the encapsulation protocol.

At the destination (e.g., a host system on the network), an
encapsulation layer 260 (e.g., a VMM on the host system)
receives the encapsulation packet 214C via path 256. A
decapsulation 262 module or function of the encapsulation
layer 260 de-encapsulates the network packet(s) 202C from
the encapsulation packet 214C and provides the network
packet(s) 202C to the packet destination 270 (e.g., a VM on
the host system). The encapsulation layer 260 may inform the
packet destination that the packet destination should validate
the network packet(s) 214C according to the checksum
value(s) in the network packet header(s). The packet destina-
tion may then validate the network packet(s) using the check-
sum value in the network packet header(s) according to a
standard network protocol checksum mechanism 204, for
example a standard TCP checksum or standard UDP check-
sum depending on the network packet type.

While not shown, in at least some embodiments, if check-
summing of the encapsulation packet 214C was performed at
the network device 280 to generate a checksum value in the
checksum field of the encapsulation packet 214C, then the
encapsulation packet 214C may be validated according to a
checksum module 220B by encapsulation layer 260 as shown
in FIG. 2 A prior to decapsulating the network packet(s) 214C.
Example Encapsulation Protocol Environment

Embodiments of the methods and apparatus for checksum-
ming network packets encapsulated according to an encapsu-
lation protocol may, for example, be implemented in the
context of a service provider that provides to clients or cus-
tomers, via an intermediate network such as the Internet,
virtualized resources (e.g., virtualized computing and storage

20

25

30

40

45

14

resources) implemented on a provider network 300 of the
service provider, as illustrated in FIG. 3. FIGS. 9 through 12
and the section titled Example provider network environ-
ments further illustrate and describe example service pro-
vider network environments in which embodiments of the
methods and apparatus as described herein may be imple-
mented, and are not intended to be limiting. Referring to F1G.
3, in at least some embodiments, at least some of the resources
provided to clients of the service provider via a provider
network 300A may be virtualized computing resources
implemented on multi-tenant hardware that is shared with
other client(s) and/or on hardware dedicated to the particular
client. Each virtualized computing resource may be referred
to as a resource instance 314. Resource instances 314 may, for
example, be rented or leased to clients of the service provider.
For example, clients of the service provider, via external
client device(s) 360 coupled to the provider network 300A via
an intermediate network 350 such as the Internet, may access
one or more services of the provider network 300A via APIs
to the services to obtain and configure resource instances 314
and to establish and manage virtual network configurations
that include the resource instances 314, for example virtual-
ized private networks as illustrated in FI1G. 12.

As shown in FIG. 3, in some implementations, the service
provider may have two or more provider networks 300 (pro-
vider networks 300A and 300B are shown), which may be but
are not necessarily implemented in different, possibly geo-
graphically distant, data centers. Two provider networks 300
may, for example, be coupled by one or more direct commu-
nications links 308, for example fiber optic connections.
Instead or in addition, two provider networks 300 may com-
municate over the intermediate network 350.

At least some of the resource instances 314 may, for
example, be implemented according to hardware virtualiza-
tion technology that enables multiple operating systems to
run concurrently on a host 310 computer, i.e. as virtual
machines (VMs) on the hosts 310. A hypervisor, or virtual
machine monitor (VMM) 312, on a host 310 presents the
VMs 314 on the host 310 with a virtual platform and monitors
the execution of the VMs 310. Each VM 314 may be provided
with one or more private IP addresses; the VMM 312 on a
respective host 310 may be aware of the private IP addresses
of the VMs 314 on the host 310. For further information on
hardware virtualization technology, see FIG. 10.

The provider network 300A may include a network sub-
strate 302 that includes networking devices such as routers,
switches, network address translators (NATs), and so on, as
well as the physical connections among the devices. The
VMMs 312 or other devices or processes on the network
substrate 302 may use encapsulation protocol technology to
encapsulate and route network packets (e.g., client IP pack-
ets) over the network substrate 302 between client resource
instances 314 on different hosts 310 within the provider net-
work 300A, to other devices or subnetworks on the provider
network such as network device 304, or to other devices or
client resource instances on other provider networks 300. The
encapsulation protocol technology may be used on network
substrate 302 to route encapsulated packets (network sub-
strate packets) between endpoints on the network substrate
302 or to endpoints on other provider networks 300 via paths
306 or routes. The encapsulation protocol technology may be
viewed as providing a virtual network topology overlaid on
the network substrate 302. For an example implementation of
and further information about a virtual network technology
that uses an encapsulation protocol to implement an overlay
network on a network substrate, see FIGS. 9 through 12.

US 9,106,257 B1

15

Client resource instances 314 on the hosts 310 may com-
municate with other client resource instances 314 on the same
host 310 or on different hosts 310 according to stateful pro-
tocols such as Transmission Control Protocol (TCP) and/or
according to stateless protocols such as User Datagram Pro-
tocol (UDP). However, the client packets are encapsulated
according to an encapsulation protocol by the sending VMM
312, sent over the network substrate 302 as network substrate
packets according to the encapsulation protocol, and de-en-
capsulated by the receiving VMM 312. In at least some
embodiments, the encapsulation protocol used on the net-
work substrate 302 may be a stateless protocol. However, the
encapsulation protocol may be a stateful protocol in some
embodiments. VMM 312 on a host 310, upon receiving a
client packet (e.g., a TCP or UDP packet) from a client
resource instance 314 on the host 310 and targeted at a net-
work address of another client resource instance 314, encap-
sulates or tags the client packet according to the encapsulation
protocol and sends the network substrate packet (which may
also be referred to herein as an encapsulation packet) onto the
network substrate 302 for delivery. The network substrate
packet may then be routed to another VMM 312 via the
network substrate 302 according to information in the encap-
sulation protocol packet header. The other VMM 312 strips
the encapsulation from the client packet and delivers the
client packet (e.g., a TCP or UDP packet) to the appropriate
VM on the host 310 that implements the target client resource
instance 314. Note that in some implementations, two or more
client packets may be encapsulated in a network substrate
packet.

Using embodiments of the methods and apparatus for
checksumming network packets encapsulated according to
an encapsulation protocol, at least some of the VMMs 312 on
provider networks 300A and 300B may each implement a
checksum module 320 that implements an embodiment of the
encapsulation protocol checksum method at the encapsula-
tion layer as described herein. When sending network sub-
strate (encapsulation) packets over the network substrate 302
between resource instances 314 on hosts 310 on provider
network 300A as shown by example paths 306A, 306B, and
306C, the methods as described in FIGS. 1A and 2A may be
applied to checksum the network substrate packets at the
encapsulation layer (i.e., at the VMMs 312). In addition, in
some embodiments, the methods as described in FIGS. 1A
and 2A may be applied to checksum the network substrate
packets at the encapsulation layer (i.e., at the VMMs 312)
when sending network substrate packets between resource
instances fronted by VMMSs 312 on different provider net-
works 300A and 300B via a direct communication link 308
between the provider networks 300, as shown by path 306D
between VMM 312A on provider network 300A and VMM
312D on provider network 300B.

In addition, in at least some embodiments, a network
device 304 (e.g., an edge router) may implement a checksum
module 320E. When a resource instance 314 is communicat-
ing with an external device via an intermediate network 350
such as a client device 360 on an external client network, the
methods as described in FIGS. 1B, 2B, and 2C may be
applied. For example, VMM 312C may send checksummed
network substrate packets to network device 304 via path
306E over the network substrate 302; network device 304
may invoke checksum module 320F to validate the check-
sum, de-encapsulate the IP packets, add a routable IP address
to the IP packets, checksum the IP packets according to a
standard IP protocol checksumming mechanism, and send

10

15

20

25

30

35

40

45

50

55

60

65

16

the checksummed IP packets onto the intermediate network
350 for routing to a client device 360 as described in FIGS. 1B
and 2B.

FIG. 4 illustrates implementing the methods and apparatus
for checksumming network packets encapsulated according
to an encapsulation protocol for a particular path or data flow
between client resource instances in an example client private
network on an example provider network, according to at
least some embodiments. In at least some implementations, a
client may establish a private network 410 on a provider
network, for example as illustrated in FIG. 3. Referring to
FIG. 4, the private network 410 may include multiple client
resource instances 414 implemented on VMs monitored by
VMMs 412. For example, client resource instance 414A may
be monitored by VMM 412A and client resource instance
414B may be monitored by VMM 412B.

Client resource instance 414 A may send client data packets
to client resource instance 414B. VMM 412 A may receive the
client data packets, and an encapsulation 420 module or func-
tion of VMM 412A may encapsulate the client data packets
according to an encapsulation protocol. A checksum module
422 A on VMM 412 A may generate checksums for the encap-
sulation packets and write the checksum values to a checksum
field in the encapsulation packet headers, for example as
described in FIGS. 1A and 2A. The client resource instance
may then send the encapsulation packets onto the network
substrate 402. The encapsulation packets may be routed to
VMM 412B according to information in the encapsulation
packet header via a path 406 over the network substrate 402.
In some implementations, in addition to the information used
in routing and the checksum, the VMM 412A may include
additional information (e.g., acknowledgement flags, times-
tamps, packet sequence numbers, etc.) in the encapsulation
packet headers. See FIG. 5 for an example encapsulation
packet, according to at least some embodiments.

Upon receiving the encapsulation packets via path 406,
checksum module 422B on VMM 412 may validate the
encapsulation packets according to the checksums in the
encapsulation packet headers, for example as described in
FIGS. 1A and 2A. A decapsulation 432 module or function of
VMM 412B may then strip the encapsulation from the client
data packets and forward the client data packets to client
resource instance 414B.

Note that there may be one, two, or more separate data
flows from client resource instance 414A to client resource
instance 414B, each data flow corresponding to a communi-
cations session between a particular endpoint of resource
instance 414 A and a particular endpoint of resource instance
414B, and thus there may be one, two or more paths 406
between the two resource instances 414. Further note that
client resource instances 414A and 414B may communicate
according to stateful protocols such as Transmission Control
Protocol (TCP), stateless protocols such as User Datagram
Protocol (UDP), or both. Further note that client resource
instances 414A and 414B may also communicate with other
client resource instances in the client private network 410,
and thus each resource instance may be associated with other
paths over the network substrate 402.

Example Encapsulation Packet

FIG. 5 shows an example encapsulation packet 500,
according to at least some embodiments, and is not intended
to be limiting. Encapsulation packet 500 may also be referred
to as a network substrate packet. Encapsulation packet 500
may include one or more network packets 520 (e.g., IP, TCP,
or UDP packets) encapsulated or tagged according to an
encapsulation protocol by an encapsulation layer at on a
source node, for example by a source VMM on a host system.

US 9,106,257 B1

17

Each network packet 520 may include one or more network
packet headers 522. As previously noted, a network packet
520 may include one, two, or more headers according to
protocols used at the various protocol layers (e.g., Layer 3 and
Layer 4 headers), each header including metadata for a pro-
tocol used at the respective layer. At least one of the network
packet headers 522 includes a checksum field 524. Each
network packet 520 may also, but does not necessarily,
include client data 530.

The encapsulation protocol may include an encapsulation
header 502. Note that the content of the header 502 and the
ordering of elements in the header 502 are given by way of
example, and are not intended to be limiting. The encapsula-
tion header 502 may include encapsulation metadata 508
such as network address information that may, for example,
be used to route the packet 500 over a network or network
substrate to a destination (e.g., to a receiving or target VMM
or to a network device such as an edge router). In some
implementations, in addition to the information used in rout-
ing, encapsulation metadata 508 may include additional
information (e.g., acknowledgement flags, timestamps,
packet sequence numbers, etc.) The sender (e.g., a sending
VMM) may fill in this metadata 508 when encapsulating the
network packet(s) 520.

The encapsulation header 502 may also include at least one
encapsulation packet checksum 504 field to which a check-
sum value or values, generated for the encapsulation packet
500 by a checksum module that implements an embodiment
of'the encapsulation protocol checksum method as described
herein, may be written. Note that the checksum field 524 of
the packet header(s) 522 of the encapsulated network pac-
ket(s) 520 may not be used. In at least some embodiments, the
checksum 504 field in the header 502 may be a larger check-
sum field (e.g., a 32-bit field, 64-bit field, etc.) than the 16-bit
field used in network protocols such as UDP and TCP, allow-
ing other and more robust error detection and/or error correc-
tion technology to be used, such as CRC32 technology and
erasure coding technology, than the error detection technol-
ogy provided by standard network protocol checksum
mechanisms. However, some embodiments may use a 16-bit
checksum field. In addition, the encapsulation header 502
may also include other checksum information 506, such as an
indication of whether or not checksumming has been per-
formed and an indication ofthe checksumming algorithm that
was used on the encapsulation packet(s) 500 at the source
encapsulation layer.

The encapsulation protocol may, but does not necessarily,
also include an encapsulation footer 510 that may include
other encapsulation metadata 512. In some embodiments, the
encapsulation packet checksum 504 field(s) and/or other
checksum information 506 may be located in the footer 510
instead of or in addition to the header 504.

Selecting Checksum Algorithms

As previously mentioned, in at least some embodiments,
the checksum algorithm that is used may be selected from
among several checksum algorithms. FIGS. 6 and 7 illustrate
embodiments in which a checksum algorithm is selected for a
path or route over a network based on one or more criteria. For
example, a checksum algorithm may be selected based on a
determined level of confidence in the quality of the path or
route over which the encapsulation packets are to be trans-
mitted.

FIG. 6 is a high-level flowchart of an encapsulation proto-
col checksum method in which a checksum algorithm is
selected from among several checksum algorithms based on
one or more criteria, according to at least some embodiments.
In FIG. 6, as in FIGS. 1A and 2A, network packets are being

20

25

40

45

18

transmitted from a packet source on a network to a packet
destination on the network via a network substrate. Note,
however, that a similar method for selecting checksum algo-
rithms may be applied when network packets are being sent
from a packet source on a network to a packet destination on
another network, for example as illustrated in FIGS. 1B and
2B.

Referring to FIG. 6, as indicated at 600, a packet source on
a source node generates one or more network packets without
performing a checksum operation on the packet(s), and thus
without a checksum value in the checksum field of the net-
work packet header(s). The generated network packet(s) are
obtained by the source encapsulation layer on the source
node. For example, the packet source may be a VM on a host
system, and the source encapsulation layer may be imple-
mented as or by a VMM on the host system, as illustrated in
FIG. 3. The network packet(s) include metadata that indicates
a packet destination for the packet(s), for example a VM on
another host system.

As indicated at 602, the source encapsulation layer encap-
sulates the network packet(s) according to an encapsulation
protocol to generate an encapsulation packet. See FIG. 5 for
an example encapsulation packet that encapsulates one or
more network packets and that includes an encapsulation
header. The encapsulation header may include, but is not
limited to, address and other information for routing the
encapsulation packet to a destination (e.g.,a VMM on another
host system) via a path over the network substrate according
to the encapsulation protocol.

As indicated at 604, a checksum algorithm is determined
for the path via which the encapsulation packet is to be sent
over the network substrate to the destination based on one or
more criteria. In at least some embodiments, the source
encapsulation layer on the source node determines the check-
sum algorithm to be used. However, in at least some embodi-
ments, the source node may communicate or cooperate with
the destination node to determine the checksum algorithm to
be used.

In at least some embodiments, the checksum algorithm to
be used may be selected from among several checksum algo-
rithms, for example based on a determined level of confidence
in the quality ofthe path or route over which the encapsulation
packet is to be transmitted. For paths with higher confidence
levels, less robust checksumming algorithms, or even no
checksumming, may be used. For paths with lower confi-
dence levels, more robust checksumming algorithms may be
used. For some paths with low confidence levels, strong
checksumming algorithms and/or algorithms that generate
checksums that allow error correction may be used. In various
embodiments, the confidence level in the path may be deter-
mined according to one or more of several techniques. The
following lists some example techniques that may be used
alone or in combination with other techniques to determine
the confidence level in a path in embodiments, and is not
intended to be limiting.

The confidence level may be based on physical location of
the destination relative to the source. For example, if the
destination is a VM located in the same rack as the
source in a data center, a high confidence level may be
assigned to the path. If the destination is a VM located in
another rack than the rack in which the source is located
in the data center, a lower but still relatively high confi-
dence level may be assigned to the path. If the destina-
tion is a VM located in another data center, a lower
confidence level may be assigned to the path. If the path

US 9,106,257 B1

19

to the destination goes over an intermediate network
such as the Internet, a low confidence level may be
assigned to the path.

The confidence level may be based on performance statis-
tics for the paths or routes between sources and destina-
tions on a network substrate. For example, one or more
processes on a network substrate that routes encapsula-
tion packets according to an encapsulation protocol may
collect one or more performance metrics, for example
dropped packet data and round-trip time data, for paths
or routes on the network substrate, and may analyze the
collected data to generate performance statistics for the
paths. The performance statistics may be maintained in
routing information for the network substrate. The
source encapsulation layer may access the performance
statistics for a path to the destination to determine the
confidence level for the path.

The confidence level may be based on historical perfor-
mance for the path between the source and destination
maintained by the source. For example, the VMM on a
host machine may record performance metrics, for
example dropped packet information, for path to one or
more destinations. The source encapsulation layer may
access the historical performance information for a path
to the destination to determine the confidence level for
the path. For example, if the path has a history of many
dropped packets, then a low confidence level may be
assigned to the path. If the path seldom or never drops
packets, then a high confidence level may be assigned to
the path.

However, note that other techniques may be used to deter-
mine confidence levels in paths in some embodiments. In
addition, in some embodiments, a combination of two or
more techniques may be used to determine confidence levels
in paths or routes between two endpoints.

Given the confidence level determined according to one or
more of the above techniques, a checksum algorithm for the
path to the destination may be determined. For example, one
or more thresholds in confidence level may be specified. The
following provides an example of selecting among several
checksum algorithms according to specified thresholds
according to a determined confidence level, and is not
intended to be limiting:

At or above a high threshold—no checksumming is per-

formed.

Between the high threshold and a middle threshold—a
relatively weak (e.g., a 16-bit) error detecting checksum
algorithm is selected that can detect some types of
errors.

Between the middle threshold and a low threshold—a
stronger (e.g., 32-bit) error detecting checksum algo-
rithm such as a 32-bit cyclic redundancy code (CRC32)
technology algorithm is selected that can detect more
types of errors, but that typically does not provide error
correction.

At or below the low threshold—an even stronger error
detecting checksum algorithm or an algorithm that
allows for error correction may be selected, for example
an erasure coding technology algorithm or a Reed-So-
lomon technology algorithm.

Note that more or fewer levels (i.e., more or fewer thresh-
olds) may be used in some embodiments. In addition, other
checksum algorithms than the examples given may be used at
the levels.

In at least some embodiments, other criteria may be con-
sidered alone or in combination with one or more transmis-

10

15

20

25

30

35

40

45

50

55

60

65

20

sion or path quality criteria in determining a checksum algo-
rithm. These other criteria may include one or more of, but not
limited to:

Support for the checksum algorithm on both the source and
destination nodes or devices. For example, the source
node may either communicate with the destination node
or obtain configuration information about the destina-
tion node from elsewhere to determine if the destination
node supports or implements a given checksum algo-
rithm or algorithms. A checksum algorithm that both
modes support may thus be selected.

Efficiency of the checksum algorithm implementation on
the source and/or destination node. For example, a
checksum algorithm may be selected for which check-
sum calculations can be oftloaded to hardware on one or
both nodes rather than being performed by standard
CPU instructions.

Resource load on the source and/or destination node. For
example, if CPU usage is determined to be relatively
high on the source node and/or on the destination node,
a more efficient (but potentially less robust) checksum
algorithm may be selected.

As indicated at 606, the source encapsulation layer gener-
ates a checksum for the encapsulation packet according to the
selected checksum algorithm. The checksum value is written
to a checksum field in the encapsulation header of the encap-
sulation packet. See FIG. 5 for an example encapsulation
packet with a checksum field in the encapsulation header. In
addition, other information related to the checksum may be
written to the encapsulation header, such as an indication of
whether or not checksumming has been performed and an
indication of the particular checksum algorithm that was used
for the encapsulation packet at the source encapsulation layer.

As indicated at 608, the source encapsulation layer on the
source node sends the encapsulation packet to the destination
node. The encapsulation packet may be routed to the desti-
nation node via a path over the network substrate according to
the routing information in the encapsulation header. At the
destination node, the encapsulation packet may be received
by a destination encapsulation layer. For example, the packet
destination may be a VM on a host system (the destination
node), and the destination encapsulation layer may be imple-
mented as or by a VMM on the host system, as illustrated in
FIG. 3.

As indicated at 610, after receiving the encapsulation
packet, the destination encapsulation layer validates the
encapsulation packet using the checksum value in the check-
sum field in the encapsulation header of the packet. In at least
some embodiments, to validate the packet, the encapsulation
layer generates a checksum value for the entire encapsulation
packet (minus the checksum field) according to the checksum
algorithm that was used at the source encapsulation layer to
generate the checksum value in the encapsulation header, and
compares the generated checksum value to the checksum
value in the encapsulation header. If the two checksum values
are the same, then it is highly probable that the encapsulation
packet was not accidentally altered during transmission. [fthe
two checksum values differ, then at least one error has been
introduced into the encapsulation packet during transmission.
A method for handling error(s) detected in encapsulation
packets using checksumming is illustrated in FIG. 8, which is
described later in this document. Note that, if the encapsula-
tion header indicates that checksumming of the encapsulation
packet was not performed, then at 610 the destination encap-
sulation layer does not validate the packet according to the
checksum.

US 9,106,257 B1

21

As indicated at 612, the destination encapsulation layer
de-encapsulates the network packet(s) from the encapsula-
tion packet. As indicated at 614, the destination encapsulation
layer provides the network packet(s) to the packet destina-
tion. In at least some embodiments, the destination encapsu-
lation layer informs the packet destination that checksum
validation is not required for the network packet(s). For
example, the packet destination may be a VM on a host
system, and the encapsulation layer may be implemented as
or by a VMM on the host system, as illustrated in FIG. 3.

In at least some embodiments, a checksum algorithm may
be selected as described above for a first network packet in a
packet flow between two endpoints (the source endpoint and
the destination endpoint). After the algorithm is selected, it
may be applied to subsequent network packets in the packet
flow to the destination. However, in some embodiments, the
source destination layer may change to a different checksum
algorithm for the packet flow based on one or more criteria.
For example, if resource usage on the source node and/or
destination node changes, the source node may detect the
change, select a different checksum algorithm based on the
change, and switch to the different algorithm.

FIG. 7 is a high-level block diagram of a checksum tech-
nique in which a checksum algorithm is selected from among
several checksum algorithms based on one or more criteria,
according to at least some embodiments. A checksum module
720A at a source 710 receives a packet 714A. A checksum
type determination 722 module applies one or more tech-
niques, for example as described in relation to element 604 of
FIG. 6, to determine a checksum algorithm 724 for the path
752 over a network substrate or intermediate network 750 on
which the packet 714A is to be sent. In at least some embodi-
ments, the checksum algorithm 724 may be selected from
among several checksum algorithms 724 A-724N according
to one or more criteria as described above in reference to FIG.
6, for example based on a determined level of confidence in
the quality ofthe path 752 over which the packet 714 A is to be
transmitted. In this example, checksum algorithm 724B is
selected. The selected checksum algorithm 724B generates a
checksum for the packet, and the generated checksum value is
written to a checksum field in the header (or alternatively the
footer) of the packet 714A to generate packet with checksum
724B. In addition, in at least some embodiments, an indica-
tion that checksum algorithm 724B was used is written to the
header of the packet 724B. Packet with checksum 724B is
then sent to destination 760 via the path 752 over network
substrate or intermediate network 750. At destination 760, a
checksum module 720B checks the packet header to deter-
mine which checksum algorithm 724 was used on the packet
724B and validates the packet 724B according to the indi-
cated checksum algorithm (in this example, checksum algo-
rithm 724B) to generate a validated packet 724C.

Handling Errors

FIG. 8 is a flowchart of a method for handling error(s)
detected in encapsulation packets using checksumming,
according to at least some embodiments. As indicated at 800,
the destination encapsulation layer receives an encapsulation
packet that includes one or more network packets. As indi-
cated at 802, the destination encapsulation layer checks the
encapsulation packet according to the checksum algorithm
used to generate the checksum value in the encapsulation
header. The checksum algorithm may be applied to generate
a checksum value for the encapsulation packet; the generated
checksum value is compared to the checksum value in the
encapsulation header. At 804, if the checksum values are the
same, then it is assumed that no errors have been introduced
into the encapsulation packet during transmission and the

35

40

45

55

22

method proceeds to element 812. At 804, if the checksum
values are not the same, then the method goes to element 806.

At 806, if the checksum algorithm that was used to gener-
ate the checksum does not provide error correction or if error
correction is not to be performed for some reason, then the
method goes to element 816. As indicated at 816, in some
embodiments a retransmission of the encapsulation packet
may be requested. Alternatively, the encapsulation packet
may be dropped, and another layer of the network stack may
request retransmission.

At 806, if the checksum algorithm does provide error cor-
rection and error correction is to be performed, then an
attempt to correct the error(s) according to the checksum may
be made, as indicated at 808. At 810, if the error(s) were
successfully corrected, then the method proceeds to element
812. Otherwise, the method goes to element 816, where a
retransmission of the encapsulation packet may be requested,
or alternatively the encapsulation packet may be dropped.

At 812, the destination encapsulation layer de-encapsu-
lates the network packet(s) from the encapsulation packet
and, at 814, provides the network packet to the packet desti-
nation.

Example Provider Network Environments

This section describes example provider network environ-
ments in which embodiments of the methods and apparatus
for checksumming network packets encapsulated according
to an encapsulation protocol may be implemented. However,
these example provider network environments are not
intended to be limiting.

FIG. 9 illustrates an example provider network environ-
ment, according to at least some embodiments. A provider
network 900 may provide resource virtualization to clients
via one or more virtualization services 910 that allow clients
to purchase, rent, or otherwise obtain instances 912 of virtu-
alized resources, including but not limited to computation and
storage resources, implemented on devices within the pro-
vider network or networks in one or more data centers. Private
IP addresses 916 may be associated with the resource
instances 912; the private IP addresses are the internal net-
work addresses of the resource instances 912 on the provider
network 900. In some embodiments, the provider network
900 may also provide public IP addresses 914 and/or public
IP address ranges (e.g., Internet Protocol version 4 (IPv4) or
Internet Protocol version 6 (IPv6) addresses) that clients may
obtain from the provider 900.

Conventionally, the provider network 900, via the virtual-
ization services 910, may allow a client of the service pro-
vider (e.g., a client that operates client network 950A) to
dynamically associate at least some public IP addresses 914
assigned or allocated to the client with particular resource
instances 912 assigned to the client. The provider network
900 may also allow the client to remap a public IP address
914, previously mapped to one virtualized computing
resource instance 912 allocated to the client, to another vir-
tualized computing resource instance 912 that is also allo-
cated to the client. Using the virtualized computing resource
instances 912 and public IP addresses 914 provided by the
service provider, a client of the service provider such as the
operator of client network 950A may, for example, imple-
ment client-specific applications and present the client’s
applications on an intermediate network 940, such as the
Internet. Other network entities 920 on the intermediate net-
work 940 may then generate traffic to a destination public IP
address 914 published by the client network 950A; the traffic
is routed to the service provider data center, and at the data
center is routed, via a network substrate, to the private IP
address 916 of the virtualized computing resource instance

US 9,106,257 B1

23

912 currently mapped to the destination public IP address
914. Similarly, response traffic from the virtualized comput-
ing resource instance 912 may be routed via the network
substrate back onto the intermediate network 940 to the
source entity 920.

Private IP addresses, as used herein, refer to the internal
network addresses of resource instances in a provider net-
work. Private IP addresses are only routable within the pro-
vider network. Network traffic originating outside the pro-
vider network is not directly routed to private IP addresses;
instead, the traffic uses public IP addresses that are mapped to
the resource instances. The provider network may include
network devices or appliances that provide network address
translation (NAT) or similar functionality to perform the map-
ping from public IP addresses to private IP addresses and vice
versa.

Public IP addresses, as used herein, are Internet routable
network addresses that are assigned to resource instances,
either by the service provider or by the client. Traffic routed to
apublic IP address is translated, for example via 1:1 network
address translation (NAT), and forwarded to the respective
private IP address of a resource instance.

Some public IP addresses may be assigned by the provider
network infrastructure to particular resource instances; these
public IP addresses may be referred to as standard public IP
addresses, or simply standard IP addresses. In at least some
embodiments, a standard IP address is mapped to a private [P
address of a resource instance as the default configuration for
all resource instance types.

At least some public IP addresses may be allocated to or
obtained by clients of the provider network 900; a client may
then assign their allocated public IP addresses to particular
resource instances allocated to the client. These public IP
addresses may be referred to as client public IP addresses, or
simply client IP addresses. Instead of being assigned by the
provider network 900 to resource instances as in the case of
standard IP addresses, client IP addresses may be assigned to
resource instances by the clients, for example via an API
provided by the service provider. Unlike standard IP
addresses, client IP Addresses are allocated to client accounts
and can be remapped to other resource instances by the
respective clients as necessary or desired. A client [P address
is associated with a client’s account, not a particular resource
instance, and the client controls that IP address until the client
chooses to release it. Unlike conventional static IP addresses,
client IP addresses allow the client to mask resource instance
or availability zone failures by remapping the client’s public
IP addresses to any resource instance associated with the
client’s account. The client IP addresses, for example, enable
a client to engineer around problems with the client’s
resource instances or software by remapping client IP
addresses to replacement resource instances.

FIG. 10 illustrates an example data center that implements
an overlay network on a network substrate using IP tunneling
technology, according to at least some embodiments. A pro-
vider data center 1000 may include a network substrate that
includes networking devices 1012 such as routers, switches,
network address translators (NATs), and so on. At least some
embodiments may employ an Internet Protocol (IP) tunneling
technology to provide an overlay network via which encap-
sulation packets may be passed through network substrate
1010 using tunnels. The IP tunneling technology may provide
a mapping and encapsulating system for creating an overlay
network on a network (e.g., a local network in data center
1000 of FIG. 10) and may provide a separate namespace for
the overlay layer (the public IP addresses) and the network
substrate 1010 layer (the private IP addresses). Packets in the

10

15

20

25

30

35

40

45

50

55

60

65

24

overlay layer may be checked against a mapping directory
(e.g., provided by mapping service 1030) to determine what
their tunnel substrate target (private IP address) should be.
The IP tunneling technology provides a virtual network topol-
ogy (the overlay network); the interfaces (e.g., service APIs)
that are presented to clients are attached to the overlay net-
work so that when a client provides a network address to
which the client wants to send packets, the IP address is run in
virtual space by communicating with a mapping service (e.g.,
mapping service 1030) that knows where the IP overlay
addresses are.

In at least some embodiments, the IP tunneling technology
may map [P overlay addresses (public IP addresses) to sub-
strate IP addresses (private IP addresses), encapsulate the
packets in a tunnel between the two namespaces, and deliver
the packet to the correct endpoint via the tunnel, where the
encapsulation is stripped from the packet. In FIG. 10, an
example overlay network tunnel 1034A from a virtual
machine (VM) 1024A on host 1020A to a device on the
intermediate network 1050 and an example overlay network
tunnel 1034B between a VM 1024B on host 1020B and a VM
1024C on host 1020C are shown. In some embodiments, a
packet may be encapsulated in an overlay network packet
format before sending, and the overlay network packet may
be stripped after receiving. In other embodiments, instead of
encapsulating packets in overlay network packets, an overlay
network address (public IP address) may be embedded in a
substrate address (private IP address) of a packet before send-
ing, and stripped from the packet address upon receiving. As
an example, the overlay network may be implemented using
32-bit IPv4 (Internet Protocol version 4) addresses as the
public IP addresses, and the IPv4 addresses may be embedded
as part of 128-bit IPv6 (Internet Protocol version 6) addresses
used on the substrate network as the private IP addresses.

Referring to FIG. 10, at least some networks in which
embodiments may be implemented may include hardware
virtualization technology that enables multiple operating sys-
tems to run concurrently on a host computer (e.g., hosts
1020A and 1020B of FIG. 10), i.e. as virtual machines (VMs)
1024 on the hosts 1020. The VMs 1024 may, for example, be
rented or leased to clients of a network provider. A hypervisor,
or virtual machine monitor (VMM) 1022, on a host 1020
presents the VMs 1024 on the host with a virtual platform and
monitors the execution of the VMs 1024. Each VM 1024 may
be provided with one or more private IP addresses; the VMM
1022 on a host 1020 may be aware of the private IP addresses
of'the VMs 1024 on the host. A mapping service 1030 may be
aware of all network IP prefixes and the IP addresses of
routers or other devices serving IP addresses on the local
network. This includes the IP addresses of the VMMs 1022
serving multiple VMs 1024. The mapping service 1030 may
be centralized, for example on a server system, or alterna-
tively may be distributed among two or more server systems
or other devices on the network. A network may, for example,
use the mapping service technology and IP tunneling tech-
nology to, for example, route data packets between VMs 1024
on different hosts 1020 within the data center 1000 network;
note that an interior gateway protocol (IGP) may be used to
exchange routing information within such a local network.

Inaddition, a network such as the provider data center 1000
network (which is sometimes referred to as an autonomous
system (AS)) may use the mapping service technology, 1P
tunneling technology, and routing service technology to route
packets from the VMs 1024 to Internet destinations, and from
Internet sources to the VMs 1024. Note that an external gate-
way protocol (EGP) or border gateway protocol (BGP) is
typically used for Internet routing between sources and des-

US 9,106,257 B1

25

tinations on the Internet. FIG. 10 shows an example provider
data center 1000 implementing a network that provides
resource virtualization technology and that provides full
Internet access via edge router(s) 1014 that connect to Inter-
net transit providers, according to at least some embodiments.
The provider data center 1000 may, for example, provide
clients the ability to implement virtual computing systems
(VMs 1024) via a hardware virtualization service and the
ability to implement virtualized data stores 1016 on storage
resources 1018 via a storage virtualization service.

The data center 1000 network may implement IP tunneling
technology, mapping service technology, and a routing ser-
vice technology to route traffic to and from virtualized
resources, for example to route packets from the VMs 1024 on
hosts 1020 in data center 1000 to Internet destinations, and
from Internet sources to the VMs 1024. Internet sources and
destinations may, for example, include computing systems
1070 connected to the intermediate network 1040 and com-
puting systems 1052 connected to local networks 1050 that
connect to the intermediate network 1040 (e.g., via edge
router(s) 1014 that connect the network 1050 to Internet
transit providers). The provider data center 1000 network
may also route packets between resources in data center 1000,
for example from a VM 1024 on a host 1020 in data center
1000 to other VMs 1024 on the same host or on other hosts
1020 in data center 1000.

A service provider that provides data center 1000 may also
provide additional data center(s) 1060 that include hardware
virtualization technology similar to data center 1000 and that
may also be connected to intermediate network 1040. Packets
may be forwarded from data center 1000 to other data centers
1060, for example from a VM 1024 on a host 1020 in data
center 1000 to another VM on another host in another, similar
data center 1060, and vice versa.

While the above describes hardware virtualization technol-
ogy that enables multiple operating systems to run concur-
rently on host computers as virtual machines (VMs) on the
hosts, where the VMs may be rented or leased to clients of the
network provider, the hardware virtualization technology
may also be used to provide other computing resources, for
example storage resources 1018, as virtualized resources to
clients of a network provider in a similar manner.

FIG. 11 is a block diagram of an example provider network
that provides a storage virtualization service and a hardware
virtualization service to clients, according to at least some
embodiments. Hardware virtualization service 1120 provides
multiple computation resources 1124 (e.g., VMs) to clients.
The computation resources 1124 may, for example, be rented
or leased to clients of the provider network 1100 (e.g., to a
client that implements client network 1150). Each computa-
tion resource 1124 may be provided with one or more private
1P addresses. Provider network 1100 may be configured to
route packets from the private IP addresses of the computa-
tion resources 1124 to public Internet destinations, and from
public Internet sources to the computation resources 1124.

Provider network 1100 may provide a client network 1150,
for example coupled to intermediate network 1140 via local
network 1156, the ability to implement virtual computing
systems 1192 via hardware virtualization service 1120
coupled to intermediate network 1140 and to provider net-
work 1100. In some embodiments, hardware virtualization
service 1120 may provide one or more APIs 1102, for
example a web services interface, via which a client network
1150 may access functionality provided by the hardware
virtualization service 1120, for example via a console 1194.
In at least some embodiments, at the provider network 1100,
each virtual computing system 1192 at client network 1150

10

15

20

25

30

35

40

45

50

55

60

65

26

may correspond to a computation resource 1124 that is
leased, rented, or otherwise provided to client network 1150.

From an instance of a virtual computing system 1192 and/
or another client device 1190 or console 1194, the client may
access the functionality of storage virtualization service
1110, for example via one or more APIs 1102, to access data
from and store data to a virtual data store 1116 provided by the
provider network 1100. In some embodiments, a virtualized
data store gateway (not shown) may be provided at the client
network 1150 that may locally cache at least some data, for
example frequently accessed or critical data, and that may
communicate with virtualized data store service 1110 via one
or more communications channels to upload new or modified
data from a local cache so that the primary store of data
(virtualized data store 1116) is maintained. In at least some
embodiments, a user, via a virtual computing system 1192
and/or on another client device 1190, may mount and access
virtual data store 1116 volumes, which appear to the user as
local virtualized storage 1198.

While not shown in FIG. 11, the virtualization service(s)
may also be accessed from resource instances within the
provider network 1100 via API(s) 1102. For example, a client,
appliance service provider, or other entity may access a vir-
tualization service from within a respective private network
on the provider network 1100 via an API 1102 to request
allocation of one or more resource instances within the pri-
vate network or within another private network.

FIG. 12 illustrates an example provider network that pro-
vides private networks on the provider network to at least
some clients, according to at least some embodiments. A
client’s virtualized private network 1260 on a provider net-
work 1200, for example, enables a client to connect their
existing infrastructure (e.g., devices 1252) on client network
1250 to a set of logically isolated resource instances (e.g.,
VMs 1224 A and 12248 and storage 1218 A and 1218B), and
to extend management capabilities such as security services,
firewalls, and intrusion detection systems to include their
resource instances.

A client’s virtualized private network 1260 may be con-
nected to a client network 1250 via a private communications
channel 1242. A private communications channel 1242 may,
for example, be a tunnel implemented according to an encap-
sulation protocol technology or some other peering connec-
tion over an intermediate network 1240. The intermediate
network may, for example, be a shared network or a public
network such as the Internet. Alternatively, a private commu-
nications channel 1242 may be implemented over a direct,
dedicated connection between virtualized private network
1260 and client network 1250.

A public network may be broadly defined as a network that
provides open access to and interconnectivity among a plu-
rality of entities. The Internet, or World Wide Web (WWW) is
an example of a public network. A shared network may be
broadly defined as a network to which access is limited to two
or more entities, in contrast to a public network to which
access is not generally limited. A shared network may, for
example, include one or more local area networks (LANs)
and/or data center networks, or two or more LANs or data
center networks that are interconnected to form a wide area
network (WAN). Examples of shared networks may include,
but are not limited to, corporate networks and other enterprise
networks. A shared network may be anywhere in scope from
a network that covers a local area to a global network. Note
that a shared network may share at least some network infra-
structure with a public network, and that a shared network
may be coupled to one or more other networks, which may
include a public network, with controlled access between the

US 9,106,257 B1

27
other network(s) and the shared network. A shared network
may also be viewed as a private network, in contrast to a
public network such as the Internet. In embodiments, either a
shared network or a public network may serve as an interme-
diate network between a provider network and a client net-
work.

To establish a virtualized private network 1260 for a client
on provider network 1200, one or more resource instances
(e.g., VMs 1224 A and 1224B and storage 1218A and 1218B)
may be allocated to the virtualized private network 1260.
Note that other resource instances (e.g., storage 1218C and
VMs 1224C) may remain available on the provider network
1200 for other client usage. A range of public IP addresses
may also be allocated to the virtualized private network 1260.
In addition, one or more networking devices (routers,
switches, etc.) of the provider network 1200 may be allocated
to the virtualized private network 1260. A private communi-
cations channel 1242 may be established between a private
gateway 1262 at virtualized private network 1260 and a gate-
way 1256 at client network 1250.

In at least some embodiments, in addition to, or instead of,
aprivate gateway 1262, virtualized private network 1260 may
include a public gateway 1264 that enables resources within
virtualized private network 1260 to communicate directly
with entities (e.g., network entity 1244) via intermediate net-
work 1240, and vice versa, instead of or in addition to via
private communications channel 1242.

Virtualized private network 1260 may be, but is not neces-
sarily, subdivided into two or more subnets 1270. For
example, in implementations that include both a private gate-
way 1262 and a public gateway 1264, the private network
may be subdivided into a subnet 1270A that includes
resources (VMs 1224 A and storage 1218A, in this example)
reachable through private gateway 1262, and a subnet 12708
that includes resources (VMs 1224B and storage 1218B, in
this example) reachable through public gateway 1264.

The client may assign particular client public IP addresses
to particular resource instances in virtualized private network
1260. A network entity 1244 on intermediate network 1240
may then send traffic to a public IP address published by the
client; the traffic is routed, by the provider network 1200, to
the associated resource instance. Return traffic from the
resource instance is routed, by the provider network 1200,
back to the network entity 1244 over intermediate network
1240. Note that routing traffic between a resource instance
and a network entity 1244 may require network address trans-
lation to translate between the public IP address and the
private IP address of the resource instance.

At least some embodiments may allow a client to remap
public IP addresses in a client’s virtualized private network
1260 as illustrated in FIG. 12 to devices on the client’s exter-
nal network 1250. When a packet is received (e.g., from
network entity 1244), the network 1200 may determine that
the destination IP address indicated by the packet has been
remapped to an endpoint on external network 1250 and
handle routing of the packet to the respective endpoint, either
via private communications channel 1242 or via the interme-
diate network 1240. Response traffic may be routed from the
endpoint to the network entity 1244 through the provider
network 1200, or alternatively may be directly routed to the
network entity 1244 by the client network 1250. From the
perspective of the network entity 1244, it appears as if the
network entity 1244 is communicating with the public IP
address of the client on the provider network 1200. However,
the network entity 1244 has actually communicated with the
endpoint on client network 1250.

10

15

20

25

30

35

40

45

50

55

60

65

28

While FIG. 12 shows network entity 1244 on intermediate
network 1240 and external to provider network 1200, a net-
work entity may be an entity on provider network 1200. For
example, one of the resource instances provided by provider
network 1200 may be a network entity that sends traffic to a
public IP address published by the client.

Tlustrative System

In at least some embodiments, a server that implements a
portion or all of the methods and apparatus for checksum-
ming network packets encapsulated according to an encapsu-
lation protocol as described herein may include a general-
purpose computer system that includes or is configured to
access one or more computer-accessible media, such as com-
puter system 2000 illustrated in FIG. 13. In the illustrated
embodiment, computer system 2000 includes one or more
processors 2010 coupled to a system memory 2020 via an
input/output (I/O) interface 2030. Computer system 2000
further includes a network interface 2040 coupled to 1/O
interface 2030.

In various embodiments, computer system 2000 may be a
uniprocessor system including one processor 2010, or a mul-
tiprocessor system including several processors 2010 (e.g.,
two, four, eight, or another suitable number). Processors 2010
may be any suitable processors capable of executing instruc-
tions. For example, in various embodiments, processors 2010
may be general-purpose or embedded processors implement-
ing any of a variety of instruction set architectures (ISAs),
such as the x86, PowerPC, SPARC, or MIPS ISAs, or any
other suitable ISA. In multiprocessor systems, each of pro-
cessors 2010 may commonly, but not necessarily, implement
the same ISA.

System memory 2020 may be configured to store instruc-
tions and data accessible by processor(s) 2010. In various
embodiments, system memory 2020 may be implemented
using any suitable memory technology, such as static random
access memory (SRAM), synchronous dynamic RAM
(SDRAM), nonvolatile/Flash-type memory, or any other type
of memory. In the illustrated embodiment, program instruc-
tions and data implementing one or more desired functions,
such as those methods, techniques, and data described above
for the methods and apparatus for checksumming network
packets encapsulated according to an encapsulation protocol,
are shown stored within system memory 2020 as code 2025
and data 2026.

In one embodiment, I/O interface 2030 may be configured
to coordinate [/O traffic between processor 2010, system
memory 2020, and any peripheral devices in the device,
including network interface 2040 or other peripheral inter-
faces. In some embodiments, I/O interface 2030 may perform
any necessary protocol, timing or other data transformations
to convert data signals from one component (e.g., system
memory 2020) into a format suitable for use by another com-
ponent (e.g., processor 2010). In some embodiments, 1/O
interface 2030 may include support for devices attached
through various types of peripheral buses, such as a variant of
the Peripheral Component Interconnect (PCI) bus standard or
the Universal Serial Bus (USB) standard, for example. In
some embodiments, the function of /O interface 2030 may be
split into two or more separate components, such as a north
bridge and a south bridge, for example. Also, in some
embodiments some or all of the functionality of 1/O interface
2030, such as an interface to system memory 2020, may be
incorporated directly into processor 2010.

Network interface 2040 may be configured to allow data to
be exchanged between computer system 2000 and other
devices 2060 attached to a network or networks 2050, such as
other computer systems or devices as illustrated in FIGS. 1

US 9,106,257 B1

29

through 12, for example. In various embodiments, network
interface 2040 may support communication via any suitable
wired or wireless general data networks, such as types of
Ethernet network, for example. Additionally, network inter-
face 2040 may support communication via telecommunica-
tions/telephony networks such as analog voice networks or
digital fiber communications networks, via storage area net-
works such as Fibre Channel SANs, or via any other suitable
type of network and/or protocol.

In some embodiments, system memory 2020 may be one
embodiment of a computer-accessible medium configured to
store program instructions and data as described above for
FIGS. 1 through 12 for implementing embodiments of a
method for checksumming network packets encapsulated
according to an encapsulation protocol. However, in other
embodiments, program instructions and/or data may be
received, sent or stored upon different types of computer-
accessible media. Generally speaking, a computer-accessible
medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computer system 2000 via 1/O inter-
face 2030. A non-transitory computer-accessible storage
medium may also include any volatile or non-volatile media
such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM,
SRAM, etc.), ROM, etc, that may be included in some
embodiments of computer system 2000 as system memory
2020 or another type of memory. Further, a computer-acces-
sible medium may include transmission media or signals such
as electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a wireless
link, such as may be implemented via network interface 2040.

CONCLUSION

Various embodiments may further include receiving, send-
ing or storing instructions and/or data implemented in accor-
dance with the foregoing description upon a computer-acces-
sible medium. Generally speaking, a computer-accessible
medium may include storage media or memory media such as
magnetic or optical media, e.g., disk or DVD/CD-ROM, vola-
tile or non-volatile media such as RAM (e.g. SDRAM, DDR,
RDRAM, SRAM, etc.), ROM, etc, as well as transmission
media or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as net-
work and/or a wireless link.

The various methods as illustrated in the Figures and
described herein represent exemplary embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit of
this disclosure. It is intended to embrace all such modifica-
tions and changes and, accordingly, the above description to
be regarded in an illustrative rather than a restrictive sense.

What is claimed is:

1. A provider network, comprising;

a network substrate; and

aplurality ofhost devices coupled to the network substrate,
wherein each host device includes a plurality of virtual
machines (VMs) and a virtual machine monitor (VMM)
that monitors the plurality of VMs on the respective host
device, wherein each VMM is configured to:
obtain one or more Internet Protocol (IP) packets gen-

erated by a source VM on the respective host device,

10

15

20

25

30

35

40

45

50

55

60

65

30

wherein the one or more IP packets are not check-
summed by the source VM;

encapsulate the one or more IP packets according to an
encapsulation protocol to generate a network sub-
strate packet that includes the one or more IP packets
as a payload, wherein the network substrate packet
includes network substrate packet metadata;

generate a checksum of at least the payload of the net-
work substrate packet according to a checksum algo-
rithm;

write the generated checksum to a checksum field of the
network substrate packet metadata; and

send the network substrate packet to a destination on the
provider network over the network substrate.

2. The provider network as recited in claim 1, wherein the
one or more IP packets are for a target VM on one of the
plurality of host devices, wherein the destination is the VMM
that monitors the target VM, and wherein the destination
VMM is configured to:

receive the network substrate packet via the network sub-

strate;
generate a checksum value for at least the payload of the
network substrate packet according to the checksum
algorithm that was used to generate the checksum in the
checksum field of the network substrate packet meta-
data;
compare the generated checksum value to the checksum in
the checksum field of the network substrate packet meta-
data to validate the received network substrate packet;

de-encapsulate the one or more IP packets from the net-
work substrate packet;

provide the one or more IP packets to the target VM; and

inform the target VM that checksumming of the one or

more [P packets is not required.

3. The provider network as recited in claim 1, wherein the
one or more [P packets are for a target device on another
network, wherein the destination is a network device that
couples the network substrate to the other network, and
wherein the network device is configured to:

receive the network substrate packet via the network sub-

strate;

validate the received network substrate packet according to

the checksum in the checksum field of the network sub-
strate packet metadata;

de-encapsulate the one or more IP packets from the net-

work substrate packet; and

for each of the one or more IP packets:

generate at least one checksum for the IP packet;

write the at least one checksum for the IP packet to the IP
packet; and

send the IP packet to the target device over the other
network.

4. The provider network as recited in claim 1, wherein, to
generate a checksum of at least the payload of the network
substrate packet according to a checksum algorithm, each
VMM is configured to offload at least a portion of checksum
calculation to hardware on the respective host system.

5. The provider network as recited in claim 1, wherein each
VMM is further configured to select an algorithm used to
generate the checksum from among a plurality of algorithms
based on one or more criteria, wherein at least one of the
plurality of algorithms provides error correction or error
detection capability, and wherein the one or more criteria
include one or more of quality of a path over the network
substrate to the destination, support for the algorithm on the
VMM and the destination, efficiency of the algorithm on the
VMM, or resource load on the VMM.

US 9,106,257 B1

31

6. The provider network as recited in claim 1, wherein each
of the one or more IP packets comprises one of a Transmis-
sion Control Protocol (TCP) packet or a User Datagram Pro-
tocol (UDP) packet.

7. The provider network as recited in claim 1, wherein at
least a subset of the VM on the plurality of host devices are
each assigned to one of a plurality of clients of the provider
network as a client resource instance, and wherein at least two
of'the VMs on at least one host device are assigned to different
ones of the plurality of clients.

8. A method, comprising:

performing, by an encapsulation layer on a computing

device:

obtaining one or more network packets generated by a
packet source on the computing device, wherein each
of the one or more network packets includes at least
one checksum field that is not filled by the packet
source;

tagging the one or more network packets with encapsu-
lation metadata for routing the one or more network
packets over a first network to a destination device to
generate an encapsulated packet;

generating a checksum value for at least the one or more
network packets in the encapsulated packet according
to a checksum algorithm;

writing the checksum value to the encapsulated packet
as additional encapsulation metadata; and

sending the encapsulated packet to the destination
device over the first network according to the encap-
sulation metadata.

9. The method as recited in claim 8, wherein the destination
device is another computing device on the first network, the
method further comprising performing, by an encapsulation
layer on the destination device:

receiving the encapsulated packet;

validating the received encapsulated packet according to

the checksum in the encapsulation metadata;

removing the encapsulation metadata from the one or more

network packets;

providing the one or more network packets to a packet

destination on the destination computing device; and
informing the packet destination that checksumming the
one or more network packets is not required.

10. The method as recited in claim 8, wherein the one or
more network packets are generated by the packet source
according to a network protocol that requires the at least one
checksum field in each of the one or more network packets to
be filled to be compliant with standards of the network pro-
tocol.

11. The method as recited in claim 8, wherein the one or
more network packets are for a target device on a second
network, wherein the destination device is a network device
on the first network that couples the first network to the
second network, and wherein the method further comprises
performing, by the network device:

receiving the encapsulated packet;

removing the encapsulation metadata from the one or more

network packets; and

for each of the one or more network packets:

generating at least one checksum value for the network
packet;

writing the at least one checksum value for the network
packet to the network packet; and

sending the network packet to the target device over the
second network.

12. The method as recited in claim 11, further comprising
validating the received encapsulated packet according to the

10

20

25

30

35

40

45

55

60

65

32

checksum value in the encapsulation metadata prior to said
removing the encapsulation metadata from the network
packet.

13. The method as recited in claim 8, further comprising
selecting an algorithm used to generate the checksum from
among a plurality of algorithms based on one or more of
quality of a path over the network substrate to the destination,
support for the algorithm on the VMM and the destination,
efficiency of the algorithm on the VMM, or resource load on
the VMM.

14. The method as recited in claim 13, wherein at least one
of the plurality of algorithms provides error correction or
error detection capability.

15. The method as recited in claim 8, wherein said gener-
ating a checksum value for at least the one or more network
packets in the encapsulated packet according to a checksum
algorithm comprises offloading at least a portion of checksum
calculation to hardware on the computing device.

16. The method as recited in claim 8, wherein the comput-
ing device is one of a plurality of host devices coupled to the
first network, wherein each of the plurality of host devices
includes a plurality of virtual machines (VMs) and a virtual
machine monitor (VMM) that monitors the plurality of VMs
onthe respective host device, wherein the packet source is one
of' the plurality of VMs on the computing device, wherein the
encapsulation layer is implemented by the VMM on the com-
puting device, wherein at least a subset of the VMs on the
plurality of host devices are each assigned to one of a plurality
of clients of a service provider as a client resource instance,
and wherein at least two of the VMs on at least one host device
are assigned to different ones of the plurality of clients of the
service provider.

17. A non-transitory computer-accessible storage medium
storing program instructions computer-executable to imple-
ment:

obtaining one or more network packets generated by a

packet source, wherein the network packet is not check-
summed;
encapsulating the one or more network packets according
to an encapsulation protocol to generate an encapsulated
packet, wherein the encapsulated protocol includes
metadata that specifies routing information for routing
the encapsulated packet over a first network to a desti-
nation on the first network;
selecting an algorithm for generating a checksum for the
encapsulated packet from among a plurality of algo-
rithms based on one or more selection criteria;

generating a checksum for at least the one or more network
packets in the encapsulated packet according to the
selected algorithm;

writing the checksum to a checksum field of the encapsu-

lation protocol in the encapsulated packet; and

sending the encapsulated packet to the destination over the

first network according to the routing information speci-
fied in the encapsulation metadata.

18. The non-transitory computer-accessible storage
medium as recited in claim 17, wherein the one or more
selection criteria include one or more of a determined level of
confidence in quality of a path over the first network via which
the encapsulated packet is to be routed to the destination,
support for the algorithm, efficiency of the algorithm, or
resource load.

19. The non-transitory computer-accessible storage
medium as recited in claim 17, wherein the program instruc-
tions are further computer-executable to implement:

US 9,106,257 B1
33

receiving an encapsulated packet via the network, wherein
the received encapsulated packet includes at least one
network packet for a packet destination;

validating the received encapsulated packet according to a

checksum value for the encapsulated packet in the 5
encapsulation header of the received encapsulated
packet;

decapsulating the at least one network packet from the

encapsulated packet;

providing the at least one network packet to the packet 10

destination; and

informing the packet destination that checksumming ofthe

at least one network packet is not required.
20. The non-transitory computer-accessible storage
medium as recited in claim 17, wherein the program instruc- 15
tions are further computer-executable to implement:
receiving an encapsulated packet via the network, wherein
the received encapsulated packet includes at least one
network packet for a packet destination on a second
network; 20

decapsulating the at least one network packet from the
encapsulated packet;

for each of the at least one network packet:

generating at least one checksum for the network packet;

writing the at least one checksum for the network packet 25
to the network packet; and

sending the network packet to the packet destination
over the second network.

#* #* #* #* #*

